I'm using TF 2.2 and I'm trying to use tf.data to create a pipeline.
The following works fine:
def load_image(filePath, label):
print('Loading File: {}' + filePath)
raw_bytes = tf.io.read_file(filePath)
image = tf.io.decode_image(raw_bytes, expand_animations = False)
return image, label
# TrainDS Pipeline
trainDS = getDataset()
trainDS = trainDS.shuffle(size['train'])
trainDS = trainDS.map(load_image, num_parallel_calls=AUTOTUNE)
for d in trainDS:
print('Image: {} - Label: {}'.format(d[0], d[1]))
I would like to use the load_image()
with the Dataset.interleave()
. Then I tried:
# TrainDS Pipeline
trainDS = getDataset()
trainDS = trainDS.shuffle(size['train'])
trainDS = trainDS.interleave(lambda x, y: load_image_with_label(x, y), cycle_length=4)
for d in trainDS:
print('Image: {} - Label: {}'.format(d[0], d[1]))
But I'm getting the following error:
Exception has occurred: TypeError
`map_func` must return a `Dataset` object. Got <class 'tuple'>
File "/data/dev/train_daninhas.py", line 44, in <module>
trainDS = trainDS.interleave(lambda x, y: load_image_with_label(x, y), cycle_length=4)
How can I adapt my code to have the Dataset.interleave()
working with the load_image()
to read the images in parallel ?
As the error suggests, you need to modify the load_image
so that it return a Dataset
object, I have shown an example with two images on how to go about doing it in tensorflow 2.2.0
:
import tensorflow as tf
filenames = ["./img1.jpg", "./img2.jpg"]
labels = ["A", "B"]
def load_image(filePath, label):
print('Loading File: {}' + filePath)
raw_bytes = tf.io.read_file(filePath)
image = tf.io.decode_image(raw_bytes, expand_animations = False)
return tf.data.Dataset.from_tensors((image, label))
dataset = tf.data.Dataset.from_tensor_slices((filenames, labels))
dataset = dataset.interleave(lambda x, y: load_image(x, y), cycle_length=4)
for i in dataset.as_numpy_iterator():
image = i[0]
label = i[1]
print(image.shape)
print(label.decode())
# (275, 183, 3)
# A
# (275, 183, 3)
# B