I have a pipeline that works great for what I need... but I think there is some redundant data that can be removed from the pipeline.
This is what I want the output to look like
{
"_id": "5ecee2189fdd1b0004056936",
"name": "Mike",
"history": [
{
"_id": "5ecb263c166b8500047c1411",
"what": "Log IN"
},
{
"_id": "5ecb263c166b8500047c1422",
"what": "Log OUT"
}
]
}
This is what the output currently looks like
{
"docs": [
{
"_id": "5ecee2189fdd1b0004056936",
"name": "Mike",
"history": {
"_id": "5ecb263c166b8500047c1411",
"what": "Log IN"
},
"historyIndex": 0
},
{
"_id": "5ecee2189fdd1b0004056936",
"name": "Mike",
"history": {
"_id": "5ecb263c166b8500047c1422",
"what": "Log OUT"
},
"historyIndex": 1
}
]
}
In real life there will be more users than this... of course...
{
"_id": "5ecee2189fdd1b0004056936",
"name": "Mike",
}
again, to make it simple, I am keeping data short
[
{
"_id": "5ecb263c166b8500047c1411",
"userId": "5ecee2189fdd1b0004056936",
"what": "Log IN"
},
{
"_id": "5ecb263c166b8500047c1422",
"userId": "5ecee2189fdd1b0004056999",
"what": "Log IN"
},
{
"_id": "5ecb263c166b8500047c1433",
"userId": "5ecee2189fdd1b0004056936",
"what": "Log OUT"
},
{
"_id": "5ecb263c166b8500047c1444",
"userId": "5ecee2189fdd1b0004056999",
"what": "Log OUT"
}
]
I am also using mongoose-aggregate-paginate-v2, but I don't think that is my issue, but it definitely comes into play when the results are returned. it needs to have the docs flattened so it can count and paginate them:
"totalDocs": 941,
"limit": 500,
"page": 1,
"totalPages": 2,
"pagingCounter": 1,
"hasPrevPage": false,
"hasNextPage": true,
"prevPage": null,
"nextPage": 2
Here is my pipeline
var agg_match = {
$match:
{
_id: mongoose.Types.ObjectId(userId)
}
};
var agg_lookup = {
$lookup: {
from: 'it_userhistories',
localField: '_id',
foreignField: 'userId',
as: 'history'
}
}
var agg_unwind = {
$unwind: {
path: "$history",
preserveNullAndEmptyArrays: true,
includeArrayIndex: 'historyIndex',
}
}
var agg = [
agg_match,
agg_lookup,
agg_unwind,
agg_project,
];
var pageAndLimit = {
page:page,
limit:limit
}
User.aggregatePaginate(myAggregate, pageAndLimit)
You can use $map
operator to do this. Following query will be helpful (I have not included the match stage in the pipeline, you can easily include it):
db.user.aggregate([
{
$lookup: {
from: "history",
localField: "_id",
foreignField: "userId",
as: "history"
}
},
{
$project: {
name: 1,
history: {
$map: {
input: "$history",
as: "h",
in: {
_id: "$$h._id",
what: "$$h.what"
}
}
}
}
}
])