I am a beginner at programing, and I wrote a script that implements an Optimization algorithm. It worked fine at first; but then I tried to make it faster by defining a new variable, and now for some reason it appears to be stuck in an infinite loop. Here is the first version (I have indicated in a comment where the change will happen):
# This program uses the Steepest Descent Method to
# minimize the Rosenbrock function
import numpy as np
import time
# Define the Rosenbrock Function
def f(x_k):
x, y = x_k[0, 0], x_k[0, 1]
return 100 * (y - x**2)**2 + (1 - x)**2
# Gradient of f
def gradient(x_k):
x, y = x_k[0, 0], x_k[0, 1]
return np.array([[-400*x*(y-x**2)-2*(1-x), 200*(y-x**2)]])
def main():
start = time.time()
# Define the starting guess
x_k = np.array([[2, 2]])
# Define counter for number of steps
numSteps = 0
# Keep iterating until both components of the gradient are less than 0.1 in absolute value
while abs((gradient(x_k)[0, 0])) > 0.1 or abs((gradient(x_k))[0, 1]) > 0.1:
numSteps = numSteps + 1
# Step direction
p_k = - gradient(x_k)
gradTrans = - p_k.T
# Now we use a backtracking algorithm to find a step length
alpha = 1.0
ratio = 0.8
c = 0.01 # This is just a constant that is used in the algorithm
# This loop selects an alpha which satisfies the Armijo condition
#####################################
###### CHANGE WILL HAPPEN HERE ######
#####################################
while f(x_k + alpha * p_k) > f(x_k) + (alpha * c * (gradTrans @ p_k))[0, 0]:
alpha = ratio * alpha
x_k = x_k + alpha * p_k
end = time.time()
print("The number of steps is: ", numSteps)
print("The final step is:", x_k)
print("The gradient is: ", gradient(x_k))
print("The elapsed time is:", round(end - start, 2), "seconds.")
main()
Now, the program is very inefficient because in the second while loop, the quantity f(x_k) + (alpha * c * (gradTrans @ p_k))[0, 0]:
is computed at each iteration, even though it is constant. So I decided to name this quantity RHS = f(x_k) + (alpha * c * (gradTrans @ p_k))[0, 0]:
and just put that in the while loop. The new code is below. All I did was define this quantity as a variable, and now the program gets stuck in a infinite loop. Thank you very much for any help.
# This program uses the Steepest Descent Method to
# minimize the Rosenbrock function
import numpy as np
import time
# Define the Rosenbrock Function
def f(x_k):
x, y = x_k[0, 0], x_k[0, 1]
return 100 * (y - x**2)**2 + (1 - x)**2
# Gradient of f
def gradient(x_k):
x, y = x_k[0, 0], x_k[0, 1]
return np.array([[-400*x*(y-x**2)-2*(1-x), 200*(y-x**2)]])
def main():
start = time.time()
# Define the starting guess
x_k = np.array([[2, 2]])
# Define counter for number of steps
numSteps = 0
# Keep iterating until both components of the gradient are less than 0.1 in absolute value
while abs((gradient(x_k)[0, 0])) > 0.1 or abs((gradient(x_k))[0, 1]) > 0.1:
numSteps = numSteps + 1
# Step direction
p_k = - gradient(x_k)
gradTrans = - p_k.T
# Now we use a backtracking algorithm to find a step length
alpha = 1.0
ratio = 0.8
c = 0.01 # This is just a constant that is used in the algorithm
# This loop selects an alpha which satisfies the Armijo condition
RHS = f(x_k) + (alpha * c * (gradTrans @ p_k))[0, 0]
#####################################
###### CHANGE HAS OCCURED ###########
#####################################
while f(x_k + alpha * p_k) > RHS:
alpha = ratio * alpha
x_k = x_k + alpha * p_k
end = time.time()
print("The number of steps is: ", numSteps)
print("The final step is:", x_k)
print("The gradient is: ", gradient(x_k))
print("The elapsed time is:", round(end - start), "seconds.")
main()
RHS
needs to be re-calcuated inside the loop, using the new value for alpha
. (Not sure how this is meant to speed things up.)