I have a dict with items probabilities. I have a df with 5 milion rows that looks like that:
user_id item_list
U1 [I1,I3,I4]
U2 [I5,I4]
and a dict: {'I1': 0.1, 'I4': 0.4, ..}
I am trying to go each row and creat a list with probailities, like that:
user_id item_list prob_list
U1 [I1,I3,I4] [0.1,0.4]
U2 [I5,I4] [0.4]
This is my code:
keys = list(prob_dict.keys())
df['prob_list'] = df.progress_apply(lambda x: get_probability(prob_dict=prob_dict,
keys=keys, item_list=x['item_list']),axis=1)
def get_probability(prob_dict, keys, item_list):
prob_list = []
for item in item_list:
if item in keys:
prob = prob_dict[item ]
prob_list.append(prob)
if len(prob_list)>=1:
return prob_list
else:
return np.nan
Since I am using tqdm I know how long its going to take (120 hours), which is too much and it's clearly not efficient.
Any ideas on how I can do it more efficently?
Use, Series.transform
to transform each item in item_list
to pandas Series and correspondingly map this series using Series.map
to a mapping dictionary d
, then use dropna
to drop the NaN
values:
d = {'I1': 0.1, 'I4': 0.4}
df['prob_list'] = (
df['item_list'].transform(lambda s: pd.Series(s).map(d).dropna().values)
)
UPDATE (Use multiprocessing
to improve the speed of mapping the item_list
to prob_list
):
import multiprocessing as mp
def map_prob(s):
s = s[~s.isna()]
return s.transform(
lambda lst: [d[k] for k in lst if k in d] or np.nan)
def parallel_map(item_list):
splits = np.array_split(item_list, mp.cpu_count())
pool = mp.Pool()
prob_list = pd.concat(pool.map(map_prob, splits))
pool.close()
pool.join()
return prob_list
df['prob_list'] = parallel_map(df['item_list'])
Result:
# print(df)
uer_id item_list prob_list
0 U1 [I1, I3, I4] [0.1, 0.4]
1 U2 [I5, I4] [0.4]