I'm quite new to programming with python.
I was wondering, if there is a smart way to solve a function, which includes a gamma function with a certain shape and scale.
I already created a function G(x), which is the cdf of a gamma function up to a variable x. Now I want to solve another function including G(x). It should look like: 0=x+2*G(x)-b. Where b is a constant.
My code looks like that:
b= 10
def G(x):
return gamma.cdf(x,a=4,scale=25)
f = solve(x+2*G(x)-b,x,dict=True)
How is it possible to get a real value for G(x) in my solve function?
Thanks in advance!
To get roots from a function there are several tools in the scipy module.
Here is a solution with the method fsolve()
from scipy.stats import gamma
from scipy.optimize import fsolve
def G(x):
return gamma.cdf(x,a=4,scale=25)
# we define the function to solve
def f(x,b):
return x+2*G(x)-b
b = 10
init = 0. # The starting estimate for the roots of f(x) = 0.
roots = fsolve(f,init,args=(b))
print roots
Gives output :
[9.99844838]
Given that G(10) is close to zero this solution seems likely
Sorry, I didn't take into account your dict=True option but I guess you are able to put the result in whatever structure you want without my help.