I have got this table:
Trader Date EUR
T1 01.05.2020. 12.36
T2 03.05.2020. 14.48
T2 02.05.2020. 23.69
T1 04.05.2020. 45.78
T3 04.05.2020. 15.26
After I apply pivot in Python by using pandas library:
a = a.pivot_table(index=['Date'],columns=['Trader'],values=['EUR'])
I got this view:
EUR
Trader T1 T2 T3
Date
01.05.2020. 12.36 NaN NaN
02.05.2020. NaN 23.69 NaN
03.05.2020. NaN 14.48 NaN
04.05.2020. 45.78 NaN 15.26
Now I would like to get rid of first row (EUR) and third row (Date) and use the rest later. In Excel I would simply delete both rows. How to do this in Python/panda?
Thanks
Valters
Remove one element lists from your solution:
a = a.pivot_table(index='Date',columns='Trader',values='EUR')
And then if need column from index Date
then use DataFrame.rename_axis
and DataFrame.reset_index
:
a = (a.pivot_table(index='Date',columns='Trader',values='EUR')
.rename_axis(None, axis=1)
.reset_index())