Consider the following Fortran code
program example
implicit none
integer, parameter :: ik = selected_int_kind(15)
integer, parameter :: rk = selected_real_kind(15,307)
integer(ik) :: N, i, j, pc, time_rate, start_time, end_time, M
real(rk), allocatable:: K(:,:), desc(:,:)
real(rk) :: kij, dij
integer :: omp_get_num_threads, nth
N = 2000
M = 400
allocate(K(N,N))
allocate(desc(N,M))
pc=10
do i = 1, N
desc(i,:) = real(i,rk)
if (i==int(N*pc)/100) then
print * ,"desc % complete: ",pc
pc=pc+10
endif
enddo
call system_clock(start_time)
!$OMP PARALLEL PRIVATE(nth)
nth = omp_get_num_threads()
print *,"omp threads", nth
!$OMP END PARALLEL
!$OMP PARALLEL DO &
!$OMP DEFAULT(SHARED) &
!$OMP PRIVATE(i,j,dij,kij)
do i = 1, N
do j = i, N
dij = sum(abs(desc(i,:) - desc(j,:)))
kij = dexp(-dij)
K(i,j) = kij
K(j,i) = kij
enddo
K(i,i) = K(i,i) + 0.1
enddo
!$OMP END PARALLEL DO
call system_clock(end_time, time_rate)
print* , "Time taken for Matrix:", real(end_time - start_time, rk)/real(time_rate, rk)
end program example
I compiled it using gfortran-6 on MacOS X 10.11 usin following flags
gfortran example.f90 -fopenmp -O0
gfortran example.f90 -fopenmp -O3
gfortran example.f90 -fopenmp -mtune=native
following which I ran it with single and double threads using OMP_NUM_THREADS variable. I can see that it is utilizing two cores. However O3 flag which should enable vectorization, does not help the performance at all, if anything it degrades it a bit. Timings are given below (in seconds) (avgd over 10 runs):
|Thrds->| 1 | 2 |
|Opt | | |
----------------------
|O0 |10.962|9.183|
|O3 |11.581|9.250|
|mtune |11.211|9.084|
What is wrong in my program?
First of all, if you want good performance from -O3
, you should give it something that can actually be optimised. The bulk of the work happens in the sum
intrinsic, which works on a vectorised expression. It doesn't get any more optimised when you switch from -O0
to -O3
.
Also, if you want better performance, transpose desc
because desc(i,:)
is non-contiguous in memory. desc(:,i)
is. That's Fortran - its matrices are column-major.