So I have a dataframe
https://docs.google.com/spreadsheets/d/19ssG8bvkZKVDR6V5yU9fZVRJbJNfTTEYmWqLwmDwBa0/edit#gid=0
This is the out put that my code gives.
Here is the code:
from yahoofinancials import YahooFinancials
import pandas as pd
import datetime as datetime
df = pd.read_excel('C:/Users/User/Downloads/Div Tickers.xlsx', sheet_name='Sheet1')
tickers_list = df['Ticker'].tolist()
data = pd.DataFrame(columns=tickers_list)
yahoo_financials_ecommerce = YahooFinancials(data)
ecommerce_income_statement_data = yahoo_financials_ecommerce.get_financial_stmts('annual', 'income')
data = ecommerce_income_statement_data['incomeStatementHistory']
df_dict = dict()
for ticker in tickers_list:
df_dict[ticker] = pd.concat([pd.DataFrame(data[ticker][x]) for x in range(len(data[ticker]))],
sort=False, join='outer', axis=1)
df = pd.concat(df_dict, sort=True)
df_l = pd.DataFrame(df.stack())
df_l.reset_index(inplace=True)
df_l.columns = ['ticker', 'financials', 'date', 'value']
df_w = df_l.pivot_table(index=['date.year', 'financials'], columns='ticker', values='value')
export_excel = df_w.to_excel(r'C:/Users/User/Downloads/Income Statement Histories.xlsx', sheet_name="Sheet1", index= True)
How would I go about condensing the months into years so that the data is comparable Year-over-Year?
IIUC, you need to melt, then use groupby
on your date column to group by year.
#df['date'] = pd.to_datetime(df['date'])
df = pd.melt(df,id_vars=['date','financials'],var_name='ticker')
df.groupby([df['date'].dt.year,df['financials'],df['ticker']])['value'].sum().unstack()
ticker AEM AGI ALB \
date financials
2016 costOfRevenue 1.030000e+09 309000000.0 1.710000e+09
discontinuedOperations 0.000000e+00 0.0 2.020000e+08
ebit 3.360000e+08 21300000.0 5.370000e+08
grossProfit 1.110000e+09 173000000.0 9.700000e+08
incomeBeforeTax 2.680000e+08 -7600000.0 5.750000e+08
... ... ... ...
2019 researchDevelopment 0.000000e+00 0.0 5.828700e+07
sellingGeneralAdministrative 1.210000e+08 19800000.0 4.390000e+08
totalOperatingExpenses 1.650000e+09 557000000.0 2.830000e+09
totalOtherIncomeExpenseNet -1.000000e+08 2900000.0 -6.900000e+07
totalRevenue 2.490000e+09 683000000.0 3.590000e+09