I have a polynomial matrix of degree 2 like this.
print(X)
[[ 1. 5. 25.]
[ 1. 6. 36.]
[ 1. 7. 49.]
[ 1. 8. 64.]
[ 1. 9. 81.]
[ 1. 10. 100.]
[ 1. 11. 121.]
[ 1. 12. 144.]
[ 1. 13. 169.]
[ 1. 14. 196.]]
And a Matrix W with the intercept and coef values for my matrix X like this:
W = np.linalg.inv( X.T @ X ) @ X.T @ Y
print(W)
[73.55928788 -8.88859848 0.82670455]
I also have my y_P (values predicted for my whole matrix). Like this.
Y_p = W @ X.T
Y_p
array([ 49.78390909, 49.98906061, 51.84762121, 55.35959091,
60.5249697 , 67.34375758, 75.81595455, 85.94156061,
97.72057576, 111.153 ])
I have this plot for the real data for X and Y.
# --- Showing the plot (2)
plt.plot(X, Y, c='orange', linestyle='dashed',
marker='o', markerfacecolor='#ac00e6')
plt.xlabel('Year')
plt.ylabel('Av_claims')
plt.legend('Claims')
plt.grid(True)
So I'd like to graph the line of each Y predicted by each X value over this previous plot in order to visualizate how sucessfull my model is. But I'm not sure who to do that. Could you help me? Thanks!
Data:
And plot
The blue line, is a linear regression, and now I'd like to do the same stuff with my polynomial regression.
You mean something like this?
plt.plot(X, Y, c='orange', linestyle='dashed',
marker='o', markerfacecolor='#ac00e6')
plt.plot(X, Y_p)
plt.xlabel('Year')
plt.ylabel('Av_claims')
plt.legend('Claims')
plt.grid(True)