I`m reading the book PATTERNS, PRINCIPLES, AND PRACTICES OF DOMAIN-DRIVEN DESIGN, written by Scott Millett with Nike Tune. In the chapter 19, Aggregates, he states:
Sometimes it is actually good practice to modify multiple aggregates within a transaction. But it’s important to understand why the guidelines exist in the first place so that you can be aware of the consequences of ignoring them.
When the cost of eventual consistency is too high, it’s acceptable to consider modifying two objects in the same transaction. Exceptional circumstances will usually be when the business tells you that the customer experience will be too unsatisfactory.
To summarize, saving one aggregate per transaction is the default approach. But you should collaborate with the business, assess the technical complexity of each use case, and consciously ignore the guideline if there is a worthwhile advantage, such as a better user experience.
I face to a case in my project when user request a operation to my app and this operation affects two aggregate, and there are rules that must be verified by the two aggregates for the operation takes place successfully. it is something like "Allocating a cell for a detainee":
Both steps 2 and 3 could throw an exception, depending on the detainee's status and cell capacity. But abstract it.
Using eventual consistency, if step 2 is executed successfully, emiting the event DetaineeAllocated, but step 3 fails (will run in another transaction, inside an event handler), the state of aggregates will be inconsistent, and worse, the operation seemed to be executed successfully for the user.
I know that there are cases like "when the user makes a purchase over $ 100, its type must be changed to VIP" that can be implemented using eventual consistency, but the case I mentioned does not seem to be one.
Do you think that this is a special case that the book mentions?
Each aggregate must not have an invalid state (internal state), but that does not imply aggregates have to be consistent with one another (external, or system state).
Given the context of your question, the answer could be either yes or no.
The external state can become eventually consistent, which may be acceptable to your product owner. In this case you design ways to detect the inconsistency and deal with it (e.g. by retrying operations, issuing compensating transactions, etc.)
In your orchestration layer, go ahead and update the aggregates in a transaction. You might choose to do this because it's "easy" and "right", or you might choose to do this because your product owner says the inconsistency can't be tolerated for whatever reason.
There's another way out for saying this is not a special case, not a reason for more than one transaction. That way out requires a change to your model. Consider removing the mutual dependency between your detainee and the cell, and instead introducing another aggregate, CellAssignment
, which represents a moment-interval (a temporal relationship) that can be constructed and saved in a single transaction. In this case, your detainee and the cell don't change.