I am struggling with Solve.QP to get a solution to minimize tracking error. I have a benchmark consisting of 6 assets (asset_a to asset_f). For my portfolio I have upper and lower bounds (I cannot have a position in asset_f). The cov matrix is also given. I want to get the portfolio weights for the 6 assets that minimizes tracking error vs the benchmark (with position in asset_f equal to zero).
benchmark:
lowerbounds:
upperbounds:
benchmark weights and bounds:
test.benchmark_weights = c(0.3, 0.3, 0.1, 0.1, 0.1, 0.1)
test.lowerbound = c(0.166, 0.133, 0.037, 0.035, 0.039,0)
test.upperbound = c(1, 1, 1, 1, 1, 0)
cov matrix (test.Dmat):
test.dmat = matrix(c(0.0119127162, 0.010862842, 0.010266683, 0.0009550136, 0.008242322, 0.00964462, 0.0108628421, 0.010603072, 0.009872992, 0.0011019412, 0.007422522, 0.0092528873, 0.0102666826, 0.009872992, 0.010487808, 0.0012107665, 0.006489204, 0.0096216627, 0.0009550136, 0.001101941, 0.001210766, 0.0115527788, 0.001181745, 0.0008387247, 0.0082423222, 0.007422522, 0.006489204, 0.0011817453, 0.012920482, 0.005973886, 0.00964462, 0.009252887, 0.009621663, 0.0008387247, 0.005973886, 0.0089904809), nrow=6, ncol=6)
dvec (test.dvec):
test.dvec = matrix(c(0, 0, 0, 0, 0, 0), nrow=6, ncol=1)
Amat constraints matrix (test.Amat):
test.amat = matrix(c(1,1,1,1,1,1, 1,1,1,1,1,0, -1,0,0,0,0,0, 0,-1,0,0,0,0, 0,0,-1,0,0,0, 0,0,0,-1,0,0, 0,0,0,0,-1,0, 0,0,0,0,0,-1, 1,0,0,0,0,0, 0,1,0,0,0,0, 0,0,1,0,0,0, 0,0,0,1,0,0, 0,0,0,0,1,0, 0,0,0,0,0,0, -1,0,0,0,0,0, 0,-1,0,0,0,0, 0,0,-1,0,0,0, 0,0,0,-1,0,0, 0,0,0,0,-1,0, 0,0,0,0,0,0), nrow=6, ncol=20)
bvec (test.bvec)
test.bvec =cbind(0, 1, t(test.benchmark_weights), t(test.lowerbound), -t(test.upperbound)) %>% as.matrix()
then running the solver
solve.QP(as.matrix(test.Dmat), test.dvec, test.Amat, test.bvec)
gives me
constraints are inconsistent, no solution!
Seems like there is something wrong with your Amat
and bvec
, i.e. you need not have to pass in both sum of weights on first 5 assets equal to 1 and sum of 6 assets equal 1 and also benchmark weights are not constraints but the bounds are:
library(quadprog)
N = 6L
test.dvec = rep(0, N)
test.amat = cbind(
rep(1, N),
diag(1, N),
diag(-1, N))
test.bvec = c(1, test.lowerbound, -test.upperbound)
res = solve.QP(test.dmat, test.dvec, test.amat, test.bvec, meq=1L)
round(res$solution, 2)
#[1] 0.17 0.13 0.10 0.44 0.17 0.00