I am looking for the right way to calculate the AUC 95 % CI from my 5-fold CV.
n = 81 of my Training Dataset
So, if I apply 5-fold CV that equals a mean of approx . n = 16 in every fold in the test group.
My Python code below.
folds = 5
seed = 42
# Grid Search
fit_intercept=[True, False]
C = [np.arange(1,41,1)]
penalty = ['l1', 'l2']
params = dict(C=C, fit_intercept = fit_intercept, penalty = penalty)
logreg = LogisticRegression(random_state = seed)
logreg_grid = GridSearchCV(logreg, param_grid = params , cv=folds, scoring='roc_auc', iid='False')
# fit the grid with data
logreg_grid.fit(X_train, y_train)
# fit best estimator
logreg = logreg_grid.best_estimator_
# Calculate AUC in 5-fold Stratified CV
logreg_scores = cross_val_score(logreg, X_train, y_train, cv=folds, scoring='roc_auc')
print('LogReg:',logreg_scores.mean())
# LogReg Scores: [0.95714286, 0.85, 0.98333333, 0.85, 0.56666667]
# Mean: 0.8414285714285714````
#AUC from LogReg = 0.8414
#Three ways I have tried to calculate the 95 % CI:
#LogReg Scores: [0.95714286, 0.85, 0.98333333, 0.85, 0.56666667]
# Mean: 0.8414285714285714
### First try ###
import statsmodels.stats.api as sms
conf = sms.DescrStatsW(logreg_scores).tconfint_mean(.05)
print(conf)
#Out: Lower 0.636, Upper: 1.047
### Second Try ###
import scipy.stats
def mean_confidence_interval(data, confidence=0.95):
a = 1.0 * np.array(data)
n = len(a)
m, se = np.mean(a), scipy.stats.sem(a)
h = se * scipy.stats.t.ppf((1 + confidence) / 2, n-1)
return m, m-h, m+h
mean_confidence_interval(logreg_scores, confidence=0.95)
#Out: Mid: 0.84, Lower: 0.64, Upper: 1.05)
### Third ###
# interval = t * np.sqrt( (AUC * (1 - AUC)) / n)
# n = 16 (validation set), because the mean in of alle 5 folds is 16 aof my n = 81
# t = 2.120 (Source: https://www.sjsu.edu/faculty/gerstman/StatPrimer/t-table.pdf)
interval = 2.120 * np.sqrt( (0.8414285714285714 * (1 - 0.8414285714285714)) / 16)
print((.84 + interval)*100)
print(.84)
print((.84 - interval)*100)
print(interval)
# Output: Lower: 64.64 , Mid: 0.84, Upper: 103.36 , Interval: 0.194
My Question: All of the results look similar. But, what I am doing wrong, because I do not understand how the AUC can be > 1.0?
Thank you for reeding, I am looking forward for your answers.
Cheers Mischa
I am not sure whether it solves your questions, but I guess it is because you are applying a t-test for a extremly small sample size (n=5). A large variance is kind of expected, that's why mean + SD > 1 in your case. Notice that all your three methods were t-test based.
To obtain enough number of comparison, you might want to try 1) multiple repeated CV with different subclassing OR 2) bootstrappin. Some useful discussion on CV: CV