The output should contain a NumPy array with 10 numbers representing the required binomial distribution.
import numpy as np
import pandas as pd
pd.set_option('display.max_columns', 500)
seed=int(input())`enter code here`
n=int(input())
p=float(input())
i = 1`enter code here`
while i < n:
a = np.random.binomial(n, p)
s=np.array(a)`enter code here`
print(s)
i += 1
Perhaps I am missing all of the specifics, but the natural choice would be Scipy's binomial distribution features. You can see the documentation of scipy.stats.binom. Referencing the documentation,
def sample_binomial_size(size, n, p):
"""
:param size: number of samples to produce
:param n: number of available values
:param p: probability shape factor
"""
from scipy.stats import binom
return binom.rvs(n, p, size=size)