I have a machine learning facial recognition script that reads an image that you put in the same directory as it, and displays it with the faces labelled. However, if I give it an image that is to large to fit on my screen, it just doesn't fit. How would I resize this image within the Python script to fit my screen. Thanks
CODE
import face_recognition as fr
import os
import cv2
import face_recognition
import numpy as np
from time import sleep
def get_encoded_faces():
"""
looks through the faces folder and encodes all
the faces
:return: dict of (name, image encoded)
"""
encoded = {}
for dirpath, dnames, fnames in os.walk("./faces"):
for f in fnames:
if f.endswith(".jpg") or f.endswith(".png"):
face = fr.load_image_file("faces/" + f)
encoding = fr.face_encodings(face)[0]
encoded[f.split(".")[0]] = encoding
return encoded
def unknown_image_encoded(img):
"""
encode a face given the file name
"""
face = fr.load_image_file("faces/" + img)
encoding = fr.face_encodings(face)[0]
return encoding
def classify_face(im):
faces = get_encoded_faces()
faces_encoded = list(faces.values())
known_face_names = list(faces.keys())
face_locations = face_recognition.face_locations(img)
unknown_face_encodings = face_recognition.face_encodings(img, face_locations)
face_names = []
for face_encoding in unknown_face_encodings:
# See if the face is a match for the known face(s)
matches = face_recognition.compare_faces(faces_encoded, face_encoding)
name = "Unknown"
# use the known face with the smallest distance to the new face
face_distances = face_recognition.face_distance(faces_encoded, face_encoding)
best_match_index = np.argmin(face_distances)
if matches[best_match_index]:
name = known_face_names[best_match_index]
face_names.append(name)
for (top, right, bottom, left), name in zip(face_locations, face_names):
# Draw a box around the face
cv2.rectangle(img, (left-20, top-20), (right+20, bottom+20), (255, 0, 0), 2)
# Draw a label with a name below the face
cv2.rectangle(img, (left-20, bottom -15), (right+20, bottom+20), (255, 0, 0), cv2.FILLED)
font = cv2.FONT_HERSHEY_DUPLEX
cv2.putText(img, name, (left -20, bottom + 15), font, 1.0, (255, 255, 255), 2)
# Display the resulting image
while True:
cv2.imshow('Image', img)
if cv2.waitKey(1) & 0xFF == ord('q'):
return face_names
print(classify_face("test.jpg"))
As you can see, I have added some comments to help with the process. Any help would be gratefully appreciated!
Use matplotlib.pyplot.imshow
, you wouldn't have this problem then. OpenCV does that most of the times that is why I prefer matplotlib
.
import matplotlib.pyplot as plt
plt.imshow(img)
plt.show()