I have a time series index with few variables and humidity reading. I have already trained an ML model to predict Humidity values based on X, Y and Z. Now, when I load the saved model using pickle, I would like to fill the Humidity missing values using X, Y and Z. However, it should consider the fact that X, Y and Z themselves shouldnt be missing.
Time X Y Z Humidity
1/2/2017 13:00 31 22 21 48
1/2/2017 14:00 NaN 12 NaN NaN
1/2/2017 15:00 25 55 33 NaN
In this example, the last row of humidity will be filled using the model. Whereas the 2nd row should not be predicted by the model since X and Z is also missing.
I have tried this so far:
with open('model_pickle','rb') as f:
mp = pickle.load(f)
for i, value in enumerate(df['Humidity'].values):
if np.isnan(value):
df['Humidity'][i] = mp.predict(df['X'][i],df['Y'][i],df['Z'][i])
This gave me an error 'predict() takes from 2 to 5 positional arguments but 6 were given' and also I did not consider X, Y and Z column values. Below is the code I used to train the model and save it to a file:
df = df.dropna()
dfTest = df.loc['2017-01-01':'2019-02-28']
dfTrain = df.loc['2019-03-01':'2019-03-18']
features = [ 'X', 'Y', 'Z']
train_X = dfTrain[features]
train_y = dfTrain.Humidity
test_X = dfTest[features]
test_y = dfTest.Humidity
model = xgb.XGBRegressor(max_depth=10,learning_rate=0.07)
model.fit(train_X,train_y)
predXGB = model.predict(test_X)
mae = mean_absolute_error(predXGB,test_y)
import pickle
with open('model_pickle','wb') as f:
pickle.dump(model,f)
I had no errors during training and saving the model.
For prediction, since you want to make sure you have all the X, Y, Z values, you can do,
df = df.dropna(subset = ["X", "Y", "Z"])
And now you can predict the values for the remaining valid examples as,
# where features = ["X", "Y", "Z"]
df['Humidity'] = mp.predict(df[features])
mp.predict will return prediction for all the rows, so there is no need to predict iteratively.
Edit:.
For inference, say you have a dataframe df
, you can do,
# Get rows with missing Humidity where it can be predicted.
df_inference = df[df.Humidity.isnull()]
# remaining rows
df = df[df.Humidity.notnull()]
# This might still have rows with missing features.
# Since you cannot infer with missing features, Remove them too and add them to remaining rows
df = df.append(df_inference[df_inference[features].isnull().any(1)])
# and remove them from df_inference
df_inference = df_inference[~df_inference[features].isnull().any(1)]
#Now you can infer on these rows
df_inference['Humidity'] = mp.predict(df_inference[features])
# Now you can merge this back to the remaining rows to get the original number of rows and sort the rows by index
df = df.append(df_inference)
df.sort_index()