I try to fit this experimental data with a square root function, using python and the module scipy.optimize. The code for plotting and fitting looks like this.
def curve(x, a, b):
return np.sqrt(a+b*x)
xaxis = np.linspace(30, 1400, 10000)
farbe = ['tab:green', 'tab:orange', 'tab:blue']
fill = ['left', 'top', 'none']
k = 0
for i in data:
popt, pcov = curve_fit(curve, data[i].velo, data[i].avgFR)
plt.errorbar(data[i].velo, data[i].avgFR,data[i].avgFRError, xerr=None,
fmt="o", fillstyle = fill[k],alpha = 0.9,markersize=8,
markeredgewidth=2,
linewidth=3, # width of plot line
elinewidth=2,# width of error bar line
capsize=5, # cap length for error bar
capthick=1, # cap thickness for error bar
label = str(i),
color = farbe[k])
plt.plot(xaxis, curve(xaxis, *popt),color = farbe[k], linewidth = 3)
k += 1
#plt.xscale('log')
plt.legend()
plt.show()
If i execute the script the fit looks like this. What is going wrong? Is there a better way to fit my data with a square root function?
Edit: I get the following message:
__main__:2: RuntimeWarning: invalid value encountered in sqrt
__main__:2: RuntimeWarning: invalid value encountered in sqrt
__main__:2: RuntimeWarning: invalid value encountered in sqrt
I know it is not the most elegant solution, but at least it works. Instead of fitting the sqrt data i descided to calculate the square of the data and fit it with a linear function the result it self looks decent.