I have the following code for the universal sentence encoder and it gives the following error(check below) once i load the model into a flask api and try hitting it:
'''
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
module_url = "https://tfhub.dev/google/universal-sentence-encoder-large/5"
model_2 = hub.load(module_url)
print ("module %s loaded" % module_url)
def embed(input):
return model_2(input)
def universalModel(messages):
accuracy = []
similarity_input_placeholder = tf.placeholder(tf.string, shape=(None))
similarity_message_encodings = embed(similarity_input_placeholder)
with tf.Session() as session:
session.run(tf.global_variables_initializer())
session.run(tf.tables_initializer())
message_embeddings_ = session.run(similarity_message_encodings, feed_dict={similarity_input_placeholder: messages})
corr = np.inner(message_embeddings_, message_embeddings_)
accuracy.append(corr[0,1])
# print(corr[0,1])
return "%.2f" % accuracy[0]
'''
The following error it gives while using the model into the flask api: tensorflow.python.framework.errors_impl.InvalidArgumentError: Graph is invalid, contains a cycle with 1 nodes, including: StatefulPartitionedCall Although this code runs without any error the in colab notebook.
I am using tensorflow version 2.2.0.
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
These two lines are intended to make tensorflow 2.x to tensorflow 1.x.
For Tensorflow 1.x, this is common issue while serving with flask, django, etc. You have to define a graph and session for inference,
import tensorflow as tf import tensorflow_hub as hub
# Create graph and finalize (finalizing optional but recommended).
g = tf.Graph()
with g.as_default():
# We will be feeding 1D tensors of text into the graph.
text_input = tf.placeholder(dtype=tf.string, shape=[None])
embed = hub.Module("https://tfhub.dev/google/universal-sentence-encoder/2")
embedded_text = embed(text_input)
init_op = tf.group([tf.global_variables_initializer(), tf.tables_initializer()])
g.finalize()
# Create session and initialize.
session = tf.Session(graph=g)
session.run(init_op)
The input request can be handled through
result = session.run(embedded_text, feed_dict={text_input: ["Hello world"]})
For details https://www.tensorflow.org/hub/common_issues
For tensorflow 2.x session and graph is not required.
import tensorflow as tf
module_url = "https://tfhub.dev/google/universal-sentence-encoder-large/5"
model_2 = hub.load(module_url)
print ("module %s loaded" % module_url)
def embed(input):
return model_2(input)
#pass messages as list
def universalModel(messages):
accuracy = []
message_embeddings_= embed(messages)
corr = np.inner(message_embeddings_, message_embeddings_)
accuracy.append(corr[0,1])
# print(corr[0,1])
return "%.2f" % accuracy[0]