Search code examples
rmachine-learninghyperparameterstidymodels

Write a workflow for classification using tidymodels. Get "Error: Column `.row` must be length.."


I want to make a regularised logistic regression model to predict Class in the breastcancer dataset found in the OneR package. I want to put this all into a neat workflow using the tidymodels framework.

library(tidymodels)
library(OneR)

#specify model
bc.lr = logistic_reg(
  mode="classification",
  penalty = tune(),
  mixture=1
) %>%
  set_engine("glmnet")

#tune penalty term using 4-fold cv
cv_splits<-vfold_cv(breastcancer,v=4,strata="Class")

#simple recipe to scale all predictors and remove observations with NAs
bc.recipe <- recipe (Class ~., data = breastcancer) %>%
  step_normalize(all_predictors()) %>%
  step_naomit(all_predictors(), all_outcomes()) %>%
  prep()

#set up a grid of tuning parameters
tuning_grid = grid_regular(penalty(range = c(0, 0.5)),
                           levels = 10,
                           original = F)

#put everything together into a workflow
bc.wkfl <- workflow() %>%
  add_recipe(bc.recipe) %>%
  add_model(bc.lr)

#model fit
tune = tune_grid(bc.wkfl,
                 resample = cv_splits,
                 grid = tuning_grid,
                 metrics = metric_set(accuracy),
                 control = control_grid(save_pred = T))


I get a weird error when I try to call tune_grid.

Fold1: model 1/1 (predictions): Error: Column `.row` must be length ....

Solution

  • The issue here is the handling of the NA values by the recipe step. This is a step where you need think carefully about "skipping". From that article:

    When doing resampling or a training/test split, certain operations make sense for the data to be used for modeling but are problematic for new samples or the test set.

    library(tidymodels)
    #> ── Attaching packages ────────────────────────────────────────── tidymodels 0.1.0 ──
    #> ✓ broom     0.5.6      ✓ recipes   0.1.12
    #> ✓ dials     0.0.6      ✓ rsample   0.0.6 
    #> ✓ dplyr     0.8.5      ✓ tibble    3.0.1 
    #> ✓ ggplot2   3.3.0      ✓ tune      0.1.0 
    #> ✓ infer     0.5.1      ✓ workflows 0.1.1 
    #> ✓ parsnip   0.1.1      ✓ yardstick 0.0.6 
    #> ✓ purrr     0.3.4
    #> ── Conflicts ───────────────────────────────────────────── tidymodels_conflicts() ──
    #> x purrr::discard()  masks scales::discard()
    #> x dplyr::filter()   masks stats::filter()
    #> x dplyr::lag()      masks stats::lag()
    #> x ggplot2::margin() masks dials::margin()
    #> x recipes::step()   masks stats::step()
    library(OneR)
    
    lasso_spec <- logistic_reg(penalty = tune(), mixture = 1) %>%
      set_engine("glmnet")
    
    ## cross validation split
    cancer_splits <- vfold_cv(breastcancer, v = 4, strata = Class)
    
    ## preprocessing recipe (note skip = TRUE)
    cancer_rec <- recipe(Class ~ ., data = breastcancer) %>%
      step_naomit(all_predictors(), skip = TRUE) %>%
      step_normalize(all_predictors())
    
    ## grid of tuning parameters
    tuning_grid <- grid_regular(penalty(),
                                levels = 10)
    
    ## put everything together into a workflow
    cancer_wf <- workflow() %>%
      add_recipe(cancer_rec) %>%
      add_model(lasso_spec)
    
    ## fit
    cancer_res <- tune_grid(
      cancer_wf,
      resamples = cancer_splits,
      grid = tuning_grid,
      control = control_grid(save_pred = TRUE)
    )
    
    cancer_res
    #> #  4-fold cross-validation using stratification 
    #> # A tibble: 4 x 5
    #>   splits            id    .metrics          .notes           .predictions       
    #>   <list>            <chr> <list>            <list>           <list>             
    #> 1 <split [523/176]> Fold1 <tibble [20 × 4]> <tibble [0 × 1]> <tibble [1,760 × 6…
    #> 2 <split [524/175]> Fold2 <tibble [20 × 4]> <tibble [0 × 1]> <tibble [1,750 × 6…
    #> 3 <split [525/174]> Fold3 <tibble [20 × 4]> <tibble [0 × 1]> <tibble [1,740 × 6…
    #> 4 <split [525/174]> Fold4 <tibble [20 × 4]> <tibble [0 × 1]> <tibble [1,740 × 6…
    

    Created on 2020-05-14 by the reprex package (v0.3.0)

    Notice that setting skip = TRUE allows you to handle the NA values in an appropriate way for new data.