Alright, Im following https://medium.com/@phylypo/text-classification-with-scikit-learn-on-khmer-documents-1a395317d195 and https://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html trying to classify text based on category. My dataframe is laid out like this and named result
:
target type post
1 intj "hello world shdjd"
2 entp "hello world fddf"
16 estj "hello world dsd"
4 esfp "hello world sfs"
1 intj "hello world ddfd"
The goal would be to categorize a post by its type, and target just assigns number 1-16 to each of the 16 types. To classify the text I do this:
result = result[:1000] #shorten df - was :600
# split the dataset into training and validation datasets
train_x, valid_x, train_y, valid_y = model_selection.train_test_split(result['post'], result['type'], test_size=0.30, random_state=1)
# label encode the target variable
encoder = preprocessing.LabelEncoder()
train_y = encoder.fit_transform(train_y)
valid_y = encoder.fit_transform(valid_y)
def tokenizersplit(str):
return str.split()
tfidf_vect = TfidfVectorizer(tokenizer=tokenizersplit, encoding='utf-8', min_df=2, ngram_range=(1, 2), max_features=25000)
tfidf_vect.fit(result['post'])
tfidf_vect.transform(result['post'])
xtrain_tfidf = tfidf_vect.transform(train_x)
xvalid_tfidf = tfidf_vect.transform(valid_x)
def train_model(classifier, trains, t_labels, valids, v_labels):
# fit the training dataset on the classifier
classifier.fit(trains, t_labels)
# predict the labels on validation dataset
predictions = classifier.predict(valids)
return metrics.accuracy_score(predictions, v_labels)
# Naive Bayes
accuracy = train_model(naive_bayes.MultinomialNB(), xtrain_tfidf, train_y, xvalid_tfidf, valid_y)
print ("NB accuracy: ", accuracy)
# Logistic Regression
accuracy = train_model(linear_model.LogisticRegression(), xtrain_tfidf, train_y, xvalid_tfidf, valid_y)
print ("LR accuracy: ", accuracy)
And depending on how much I shorten result in the beginning, accuracy peaks at around 0.4 for all algorithms. It is supposed to be 0.8-0.9.
I read scikit very low accuracy on classifiers(Naive Bayes, DecissionTreeClassifier) but dont see how to apply it to my dataframe. My data is simple - has category (type
) and text (post
).
What is wrong here?
EDIT - naive bayes take 2:
text_clf = Pipeline([
('vect', CountVectorizer()),
('tfidf', TfidfTransformer()),
('clf', MultinomialNB()),
])
text_clf.fit(result.post, result.target)
docs_test = result.post
predicted = text_clf.predict(docs_test)
np.mean(predicted == result.target)
print("Naive Bayes: ")
print(np.mean(predicted == result.target))
The mistake I believe is in these lines:
encoder = preprocessing.LabelEncoder()
train_y = encoder.fit_transform(train_y)
valid_y = encoder.fit_transform(valid_y)
By fitting two times you reset the knowledge of the LabelEncoder
.
In a more simple example:
from sklearn import preprocessing
le = preprocessing.LabelEncoder()
y_train = le.fit_transform(["class1", "class2", "class3"])
y_valid = le.fit_transform(["class2", "class3"])
print(y_train)
print(y_valid)
Outputs these label encodings:
[0 1 2]
[0 1]
This is wrong since the encoded label 0
is class1
for the training and class2
for the validation.
I would change your first lines to:
result = result[:1000] #shorten df - was :600
# Encode the labels before splitting
encoder = preprocessing.LabelEncoder()
y_encoded = encoder.fit_transform(result['type'])
# CARE that I changed the target from result['type'] to y_encoded
train_x, valid_x, train_y, valid_y = model_selection.train_test_split(result['post'], y_encoded, test_size=0.30, random_state=1)
def tokenizersplit(str):
return str.split()
.
.
.