I want to convert the 2D sparse matrix to 3D matrix as i need to give it as the input the conv1d layer, which expects 3D tensor.
Here is the input for the conv1d layer.
from scipy.sparse import hstack
other_features_train = hstack((X_train_state_ohe, X_train_teacher_ohe, X_train_grade_ohe, X_train_category_ohe, X_train_subcategory_ohe,X_train_price_norm,X_train_number_norm))
other_features_cv = hstack((X_cv_state_ohe, X_cv_teacher_ohe, X_cv_grade_ohe,X_cv_category_ohe,X_cv_subcategory_ohe,X_cv_price_norm,X_cv_number_norm))
other_features_test = hstack((X_test_state_ohe, X_test_teacher_ohe, X_test_grade_ohe,X_test_category_ohe,X_test_subcategory_ohe,X_test_price_norm,X_test_number_norm))
print(other_features_train.shape)
print(other_features_cv.shape)
print(other_features_test.shape)
shape of the train , cv and test data
(49041, 101)
(24155, 101)
(36052, 101)
This is my model architecture.
tf.keras.backend.clear_session()
vec_size = 300
input_model_1 = Input(shape=(300,),name='essay')
embedding = Embedding(vocab_size_essay, vec_size, weights=[word_vector_matrix], input_length = max_length, trainable=False)(input_model_1)
lstm = LSTM(16)(embedding)
flatten_1 = Flatten()(lstm)
input_model_2 = Input(shape=(101, ),name='other_features')
conv_layer1 = Conv1D(32, 3, strides=1, padding='valid', kernel_initializer='glorot_uniform', activation='relu')(input_model_2)
conv_layer2 = Conv1D(32, 3, strides=1, padding='valid', kernel_initializer='glorot_uniform', activation='relu')(conv_layer1)
conv_layer3 = Conv1D(32, 3, strides=1, padding='valid', kernel_initializer='glorot_uniform', activation='relu')(conv_layer2)
flatten_2 = Flatten()(conv_layer3)
concat_layer = concatenate(inputs=[flatten_1, flatten_2],name='concat')
dense_layer_1 = Dense(units=32, activation='relu', kernel_initializer='he_normal', name='dense_layer_1')(concat_layer)
dropout_1 = Dropout(0.2)(dense_layer_1)
dense_layer_2 = Dense(units=32, activation='relu', kernel_initializer='he_normal', name='dense_layer_2')(dropout_1)
dropout_2 = Dropout(0.2)(dense_layer_2)
dense_layer_3 = Dense(units=32, activation='relu', kernel_initializer='he_normal', name='dense_layer_3')(dropout_2)
output = Dense(units=2, activation='softmax', kernel_initializer='glorot_uniform', name='output')(dense_layer_3)
model_3 = Model(inputs=[input_model_1,input_model_2],outputs=output)
and am getting this error when am trying to give 2d array.
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-18-44c8f6f0caa7> in <module>
9
10 input_model_2 = Input(shape=(101, ),name='other_features')
---> 11 conv_layer1 = Conv1D(32, 3, strides=1, padding='valid', kernel_initializer='glorot_uniform', activation='relu')(input_model_2)
12 conv_layer2 = Conv1D(32, 3, strides=1, padding='valid', kernel_initializer='glorot_uniform', activation='relu')(conv_layer1)
13 conv_layer3 = Conv1D(32, 3, strides=1, padding='valid', kernel_initializer='glorot_uniform', activation='relu')(conv_layer2)
~\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\keras\engine\base_layer.py in __call__(self, inputs, *args, **kwargs)
810 # are casted, not before.
811 input_spec.assert_input_compatibility(self.input_spec, inputs,
--> 812 self.name)
813 graph = backend.get_graph()
814 with graph.as_default(), backend.name_scope(self._name_scope()):
~\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\keras\engine\input_spec.py in assert_input_compatibility(input_spec, inputs, layer_name)
175 'expected ndim=' + str(spec.ndim) + ', found ndim=' +
176 str(ndim) + '. Full shape received: ' +
--> 177 str(x.shape.as_list()))
178 if spec.max_ndim is not None:
179 ndim = x.shape.ndims
ValueError: Input 0 of layer conv1d is incompatible with the layer: expected ndim=3, found ndim=2. Full shape received: [None, 101]
model_3.summary()
model_3.compile(loss = "binary_crossentropy", optimizer=Adam()
Compile the model
model_3.compile(loss = "binary_crossentropy", optimizer=Adam(), metrics=["accuracy"])
Fit the model
model_3.fit(train_features,y_train_ohe,batch_size=16,epochs=10,validation_data=(cv_features,y_cv_ohe))
train_features = [train_text, other_features_train]
cv_features = [cv_text, other_features_cv]
test_featues = [test_text, other_features_test]
Text Features
train_text = X_train['essay'].tolist()
cv_text = X_cv['essay'].tolist()
test_text = X_test['essay'].tolist()
token = Tokenizer()
token.fit_on_texts(train_text)
vocab_size_essay = len(token.word_index) + 1
print("No. of unique words = ", vocab_size_essay)
encoded_train_text = token.texts_to_sequences(train_text)
encoded_cv_text = token.texts_to_sequences(cv_text)
encoded_test_text = token.texts_to_sequences(test_text)
#print(encoded_test_text[:5])
max_length = 300
train_text = pad_sequences(encoded_train_text, maxlen=max_length, padding='post')
cv_text = pad_sequences(encoded_cv_text, maxlen=max_length, padding='post')
test_text = pad_sequences(encoded_test_text, maxlen=max_length, padding='post')
print("\n")
print(train_text.shape)
print(cv_text.shape)
print(test_text.shape)
shape of text features
No. of unique words = 41468
(49041, 300)
(24155, 300)
(36052, 300)
So, I want the reshape in
(49041,101,1)
(24155,101,1)
(36052,101,1)
Please suggest how to do it.
The solution here demands clarity on a few concepts as follows. I will explain these concepts in the following sections.
keras
expects as inputskeras
model to allow sparse input matricesnumpy
array to a 3D numpy
arrayscipy.sparse.coo_matrix
for 2D numpy
arraysparse.COO
for 3D numpy
arraytf.keras
modelsOne option is to convert your sparse input matrix into the non-sparse (dense) format using
todense()
method. This makes the matrix a regular numpy
array. See kaggle discussion,
[3] and [4].
Another option is to write your own custom Layers for both sparse and dense inputs by
subclassing tf.keras.layers.Layer
class. See this article, [2].
It appears that tensorflow.keras
now allows model training with sparse weights. So,
somewhere it has the ability to handle sparsity. You may want to explore the documentation,
[1] for this aspect.
You can add another axis to a numpy array using np.newaxis
as follows.
import numpy as np
## Make a 2D array
a2D = np.zeros((10,10))
# Make a few elements non-zero in a2D
aa = a2D.flatten()
aa[[0,13,41,87,98]] = np.random.randint(1,10,size=5)
a2D = aa.reshape(a2D.shape)
# Make 3D array from 2D array by adding another axis
a3D = a2D[:,:,np.newaxis]
#print(a2D)
print('a2D.shape: {}\na3D.shape: {}'.format(a2D.shape, a3D.shape))
Output:
a2D.shape: (10, 10)
a3D.shape: (10, 10, 1)
Having said that, please take a look at the links in the References section.
Since a sparse array has very few non-zero values, a regular numpy array when converted into a sparse array, stores it in a few sparse-formats:
csr_matrix
: row-wise arrays of non-zero values and indicescsc-matrix
: column-wise array of nonzero values and indicescoo-matrix
: a table with three columns
Scipy Sparse Matrices expect 2D input-matrix
However, scipy.sparse
implementation of the above three types of sparse-matrices, only
considers 2D non-sparse matrix as input.
from scipy.sparse import csr_matrix, coo_matrix
coo_a2D = coo_matrix(a2D)
coo_a2D.shape # output: (10, 10)
# scipy.sparse only accepts 2D input matrices
# the following line will throw an !!! ERROR !!!
coo_a3D = coo_matrix(coo_a2D.todense()[:,:,np.newaxis])
Yes, you can do this using the sparse
library.
It also supports scipy.sparse
and numpy
arrays. To convert from sparse matrix to
non-sparse (dense) format (this is NOT a Dense Layer in neural networks), use
the todense()
method.
## Installation
# pip install -U sparse
import sparse
## Create sparse coo_matrix from a
# 3D numpy array (dense format)
coo_a3D = sparse.COO(a3D)
## Test that
# coo_a3D == coo made from (coo_a2D + newaxis)
print(
(coo_a3D == sparse.COO(coo_a2D.todense()[:,:,np.newaxis])).all()
) # output: True
## Convert to dense (non-sparse) format
# use: coo_a3D.todense()
print((a3D == coo_a3D.todense()).all()) # output: True
torch.sparse
🔥 ⭐PyTorch library also provides ways to work with sparce tensors.
Documentation torch.sparse
: https://pytorch.org/docs/stable/sparse.html#sparse-coo-docs