Where:
V :3x3 Matrix
of complex numbers constants
V: scalar Complex number constant
The problem is to find a boolean
matrix X
that
Minimize Residules=cp.norm(cp.sum(cp.multiply(Vc,S))-V)
The following code works:
import numpy as np
import cvxpy as cp
V= np.random.random(3)*10 + np.random.random(3)*10 * 1j
C=3+4j
X=cp.Variable((3,3), boolean=True)
Residules=cp.norm(cp.sum(cp.multiply(Vc,S))-V)
Objective= cp.Minimize(Residules)
Const1=cp.sum(X,0)<=1
Prob1= cp.Problem(Objective)
Prob1.solve()
X=np.array(X.value)
print(np.round(X))
print(Prob1.value)
The output:
[[ 1. 0. 0.]
[ 1. -0. -0.]
[-0. 1. -0.]]
1.39538277332097
My question:
I want put a constraint on the problem so that for each column in Matrix X
only one element can be '1' and the rest should be zeros. So that in each Column there is at maximum one element with the value 1.
I tried :
Const1=cp.sum(X,0)<=1
Prob1= cp.Problem(Objective,[Const1])
Prob1.solve()
The following error occured:
File "path\Anaconda3\lib\site-packages\cvxpy\reductions\complex2real\complex2real.py", line 95, in invert dvars[vid] = solution.dual_vars[cid]
KeyError: 11196
Any other way to set this constraint ??
I separated the complex
from real
part. I think it works.
import numpy as np
import cvxpy as cp
Vr= np.random.random((3,3))
Vi=np.random.random((3,3))
Cr=3
Ci=4
X=cp.Variable((3,3),boolean=True)
Real=cp.sum(cp.multiply(Vr,X))-Cr
Imag=cp.sum(cp.multiply(Vi,X))-Ci
Residules=cp.norm(cp.hstack([Real, Imag]), 2)
Objective= cp.Minimize(Residules)
const1=[cp.sum(X,axis = 0)<=1]
Prob1= cp.Problem(Objective,const1)
Prob1.solve()
X=np.array(X.value)
print(np.round(X))
print(Prob1.value)