I am using K-Means clustering of sklearn and want to replace the computed K-Means cluster labels with the centroid values using trained K-Means model.
The code I am using is as follows:
# Initialize K-Means clustering model-
kmeans_conv1 = KMeans(n_clusters = 5)
# Train model on training data (compute k-means clustering)-
kmeans_conv1.fit(conv1_nonzero.reshape(-1, 1))
# number of clusters used-
kmeans_conv1.n_clusters
# 5
# Get centroids-
kmeans_conv1.cluster_centers_
'''
array([[-0.05669265],
[ 0.06742188],
[-0.08835593],
[ 0.03749201],
[ 0.0896403 ]], dtype=float32)
'''
# Clustered labels of each data point-
kmeans_conv1.labels_
set(kmeans_conv1.labels_)
Out[142]: {0, 1, 2, 3, 4}
# Get clustered label for each data point-
clustered_labels = kmeans_conv1.labels_
Currently, I am using if-else conditions to map the labels to the centroid values as:
new_clusters = []
for clabel in clustered_labels:
if clabel == 0:
new_clusters.append(kmeans_conv1.cluster_centers_[0][0])
elif clabel == 1:
new_clusters.append(kmeans_conv1.cluster_centers_[1][0])
elif clabel == 2:
new_clusters.append(kmeans_conv1.cluster_centers_[2][0])
elif clabel == 3:
new_clusters.append(kmeans_conv1.cluster_centers_[3][0])
elif clabel == 4:
new_clusters.append(kmeans_conv1.cluster_centers_[4][0])
At the end, I want 'new_clusters' list or np.array variable to contain the centroid values instead of the cluster labels.
However, is there a better way to achieve this without using if-else conditions?
This is sufficient:
for clabel in clustered_labels:
new_clusters.append(
kmeans_conv1.cluster_centers_[clabel][0]
)