Suppose I have the following code to fit a hyperbolic parabola:
# attach(mtcars)
hp_fit <- lm(mpg ~ poly(wt, disp, degree = 2), data = mtcars)
Where wt
is the x variable, disp
is the y variable, and mpg
is the z variable. (summary(hp_fit))$coefficients
outputs the following:
>(summary(hp_fit))$coefficients
Estimate Std. Error t value Pr(>|t|)
(Intercept) 22.866173 3.389734 6.7457122 3.700396e-07
poly(wt, disp, degree = 2)1.0 -13.620499 8.033068 -1.6955539 1.019151e-01
poly(wt, disp, degree = 2)2.0 15.331818 17.210260 0.8908534 3.811778e-01
poly(wt, disp, degree = 2)0.1 -9.865903 5.870741 -1.6805208 1.048332e-01
poly(wt, disp, degree = 2)1.1 -100.022013 121.159039 -0.8255431 4.165742e-01
poly(wt, disp, degree = 2)0.2 14.719928 9.874970 1.4906301 1.480918e-01
I do not understand how to interpret the varying numbers to the right of poly()
under the (Intercept)
column. What is the significance of these numbers and how would I construct an equation for the hyperbolic paraboloid fit from this summary?
When you compare
with(mtcars, poly(wt, disp, degree=2))
with(mtcars, poly(wt, degree=2))
with(mtcars, poly(disp, degree=2))
the 1.0
2.0
refer to the first and second degree of wt
, and the 0.1
0.2
refer to the first and second degree of disp
. The 1.1
is an interaction term. You may check this by comparing:
summary(lm(mpg ~ poly(wt, disp, degree=2, raw=T), data=mtcars))$coe
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) 4.692786e+01 7.008139762 6.6961935 4.188891e-07
# poly(wt, disp, degree=2, raw=T)1.0 -1.062827e+01 8.311169003 -1.2787937 2.122666e-01
# poly(wt, disp, degree=2, raw=T)2.0 2.079131e+00 2.333864211 0.8908534 3.811778e-01
# poly(wt, disp, degree=2, raw=T)0.1 -3.172401e-02 0.060528241 -0.5241191 6.046355e-01
# poly(wt, disp, degree=2, raw=T)1.1 -2.660633e-02 0.032228884 -0.8255431 4.165742e-01
# poly(wt, disp, degree=2, raw=T)0.2 2.019044e-04 0.000135449 1.4906301 1.480918e-01
summary(lm(mpg ~ wt*disp + I(wt^2) + I(disp^2) , data=mtcars))$coe[c(1:2, 4:3, 6:5), ]
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) 4.692786e+01 7.008139762 6.6961935 4.188891e-07
# wt -1.062827e+01 8.311169003 -1.2787937 2.122666e-01
# I(wt^2) 2.079131e+00 2.333864211 0.8908534 3.811778e-01
# disp -3.172401e-02 0.060528241 -0.5241191 6.046355e-01
# wt:disp -2.660633e-02 0.032228884 -0.8255431 4.165742e-01
# I(disp^2) 2.019044e-04 0.000135449 1.4906301 1.480918e-01
This yields the same values. Note that I used raw=TRUE
for comparison purposes.