I have collated some data on world happiness index reports from 2015 to 2019, which you can access here and download the dataset. I want to make an animation slider of happiness vs some other factor (like economy, health, etc) over the years. Below is my code:
import pandas as pd
from plotly.offline import download_plotlyjs, init_notebook_mode, iplot
from plotly.graph_objs import *
init_notebook_mode()
from chart_studio.grid_objs import Grid, Column
from plotly.tools import FigureFactory as FF
dataset = pd.read_csv('Full dataset.csv')
dataset.drop(['Family', 'Standard Error'], axis=1, inplace=True)
years_from_col = set(dataset['year'])
years_ints = sorted(list(years_from_col))
years = [str(year) for year in years_ints]
# make list of continents
continents = []
for continent in dataset['Continent']:
if continent not in continents:
continents.append(continent)
df = pd.DataFrame()
# make grid
for year in years:
for continent in continents:
dataset_by_year = dataset[dataset['year'] == int(year)]
dataset_by_year_and_cont = dataset_by_year[dataset_by_year['Continent'] == continent]
for col_name in dataset_by_year_and_cont:
# each column name is unique
temp = '{year}+{continent}+{header}_grid'.format(
year=year, continent=continent, header=col_name
)
#if dataset_by_year_and_cont[col_name].size != 0:
df = df.append({'value': list(dataset_by_year_and_cont[col_name]), 'key': temp}, ignore_index=True)
figure = {
'data': [],
'layout': {},
'frames': []
}
figure['layout']['xaxis'] = {'title': 'Economy (GDP per Capita)', 'type': 'log', 'autorange': True}
figure['layout']['yaxis'] = {'title': 'Happiness Score', 'autorange': True}
figure['layout']['hovermode'] = 'closest'
figure['layout']['showlegend'] = True
figure['layout']['sliders'] = {
'args': [
'slider.value', {
'duration': 400,
'ease': 'cubic-in-out'
}
],
'initialValue': '2015',
'plotlycommand': 'animate',
'values': years,
'visible': True
}
figure['layout']['updatemenus'] = [
{
'buttons': [
{
'args': [None, {'frame': {'duration': 500, 'redraw': False},
'fromcurrent': True, 'transition': {'duration': 300, 'easing': 'quadratic-in-out'}}],
'label': 'Play',
'method': 'animate'
},
{
'args': [[None], {'frame': {'duration': 0, 'redraw': False}, 'mode': 'immediate',
'transition': {'duration': 0}}],
'label': 'Pause',
'method': 'animate'
}
],
'direction': 'left',
'pad': {'r': 10, 't': 87},
'showactive': False,
'type': 'buttons',
'x': 0.1,
'xanchor': 'right',
'y': 0,
'yanchor': 'top'
}
]
sliders_dict = {
'active': 0,
'yanchor': 'top',
'xanchor': 'left',
'currentvalue': {
'font': {'size': 20},
'prefix': 'Year:',
'visible': True,
'xanchor': 'right'
},
'transition': {'duration': 300, 'easing': 'cubic-in-out'},
'pad': {'b': 10, 't': 50},
'len': 0.9,
'x': 0.1,
'y': 0,
'steps': []
}
custom_colors = {
'Asia': 'rgb(171, 99, 250)',
'Europe': 'rgb(230, 99, 250)',
'Africa': 'rgb(99, 110, 250)',
'North America': 'rgb(25, 211, 243)',
'South America': 'rgb(25, 163, 243)',
'Oceania': 'rgb(50, 170, 255)'
}
col_name_template = '{year}+{continent}+{header}_grid'
year = 2015
for continent in continents:
data_dict = {
'x': df.loc[df['key']==col_name_template.format(
year=year, continent=continent, header='Economy (GDP per Capita)'
), 'value'].values[0],
'y': df.loc[df['key']==col_name_template.format(
year=year, continent=continent, header='Happiness Score'
), 'value'].values[0],
'mode': 'markers',
'text': df.loc[df['key']==col_name_template.format(
year=year, continent=continent, header='Country'
), 'value'].values[0],
'marker': {
'sizemode': 'area',
'sizeref': 200000,
'size': df.loc[df['key']==col_name_template.format(
year=year, continent=continent, header='Generosity'
), 'value'].values[0],
'color': custom_colors[continent]
},
'name': continent
}
figure['data'].append(data_dict)
for year in years:
frame = {'data': [], 'name': str(year)}
for continent in continents:
data_dict = {
'x': df.loc[df['key']==col_name_template.format(
year=year, continent=continent, header='Economy (GDP per Capita)'
), 'value'].values[0],
'y': df.loc[df['key']==col_name_template.format(
year=year, continent=continent, header='Happiness Score'
), 'value'].values[0],
'mode': 'markers',
'text': df.loc[df['key']==col_name_template.format(
year=year, continent=continent, header='Country'
), 'value'].values[0],
'marker': {
'sizemode': 'area',
'sizeref': 200000,
'size': df.loc[df['key']==col_name_template.format(
year=year, continent=continent, header='Generosity'
), 'value'].values[0],
'color': custom_colors[continent]
},
'name': continent
}
frame['data'].append(data_dict)
figure['frames'].append(frame)
slider_step = {'args': [
[year],
{'frame': {'duration': 300, 'redraw': False},
'mode': 'immediate',
'transition': {'duration': 300}}
],
'label': year,
'method': 'animate'}
sliders_dict['steps'].append(slider_step)
figure['layout']['sliders'] = [sliders_dict]
iplot(figure, config={'scrollzoom': True})
It produces animation of a blank viz, like so:
What went wrong? And how do I fix it?
import pandas as pd
import plotly.graph_objs as go
from plotly.offline import init_notebook_mode, iplot
init_notebook_mode()
dataset = pd.read_csv('https://raw.githubusercontent.com/PrashantSaikia/Happiness-Index/master/Full%20dataset.csv')
years = list(dataset['year'].sort_values().unique())
continents = list(dataset['Continent'].sort_values().unique())
layout = {
'xaxis': {
'title': 'Economy (GDP per Capita)',
'type': 'log',
'autorange': True
},
'yaxis': {
'title': 'Happiness Score',
'autorange': True
},
'hovermode': 'closest',
'showlegend': True,
'updatemenus': [{
'buttons': [
{
'args': [None, {'frame': {'duration': 600, 'redraw': True}, 'fromcurrent': True, 'transition': {'duration': 0}}],
'label': 'Play',
'method': 'animate'
},
{
'args': [[None], {'frame': {'duration': 0, 'redraw': False}, 'mode': 'immediate', 'transition': {'duration': 0}}],
'label': 'Pause',
'method': 'animate'
}
],
'direction': 'left',
'pad': {'r': 10, 't': 87},
'showactive': False,
'type': 'buttons',
'x': 0.1,
'xanchor': 'right',
'y': 0,
'yanchor': 'top'
}],
'sliders': [{
'active': 0,
'yanchor': 'top',
'xanchor': 'left',
'currentvalue': {
'font': {'size': 20},
'prefix': 'Year:',
'visible': True,
'xanchor': 'right'},
'transition': {'duration': 300, 'easing': 'cubic-in-out'},
'pad': {'b': 10, 't': 50},
'len': 0.9,
'x': 0.1,
'y': 0,
'steps': []
}]
}
custom_colors = {
'Asia': 'rgb(171, 99, 250)',
'Europe': 'rgb(230, 99, 250)',
'Africa': 'rgb(99, 110, 250)',
'North America': 'rgb(25, 211, 243)',
'South America': 'rgb(25, 163, 243)',
'Oceania': 'rgb(50, 170, 255)'
}
data = []
year = years[0]
for continent in continents:
df = dataset[(dataset['Continent'] == continent) & (dataset['year'] == year)]
data.append(go.Scatter(x=df['Economy (GDP per Capita)'],
y=df['Happiness Score'],
text=df['Country'],
mode='markers',
marker={
'size': 100 * df['Generosity'],
'color': custom_colors[continent]
},
name=continent))
frames = []
for year in years[1:]:
frame = {'data': [], 'name': str(year)}
for continent in continents:
df = dataset[(dataset['Continent'] == continent) & (dataset['year'] == year)]
frame['data'].append(go.Scatter(x=df['Economy (GDP per Capita)'],
y=df['Happiness Score'],
text=df['Country'],
mode='markers',
marker={
'size': 100 * df['Generosity'],
'color': custom_colors[continent]
},
name=continent))
frames.append(go.Frame(data=frame['data'], name=frame['name']))
slider_step = {
'args': [
[str(year)],
{'frame': {'duration': 600, 'redraw': True},
'mode': 'immediate',
'transition': {'duration': 200}}
],
'label': str(year),
'method': 'animate'
}
layout['sliders'][0]['steps'].append(slider_step)
figure = go.Figure(data=data, layout=layout, frames=frames)
iplot(figure)