I am trying to create a function that will minimize the number of times I will have to calculate all of the stats individually (Min, Median, Max, Mean, SD, and NAs). I have included the first two pieces of this large list, and how the list is being used.
list("Child Age" =
list("Min" = ~ min(.data$ChildAge,na_rm = TRUE),
"Median" = ~ median(.data$ChildAge,na_rm = TRUE),
"Mean ± SD" = ~ qwraps2::mean_sd(.data$ChildAge,na_rm = TRUE),
"Max" = ~ max(.data$ChildAge,na_rm = TRUE),
"NA (Not factored in analysis)" = ~ percent(sum(is.na(.data$ChildAge)) /length(.data$ChildAge))),
"Child Gender" =
list("Girl" = ~ qwraps2::n_perc(.data$ChildGender == "Girl", na_rm = TRUE),
"Boy" = ~ qwraps2::n_perc(.data$ChildGender == "Boy", na_rm = TRUE))
......
by_clinic_demographic <- summary_table(dplyr::group_by(df, Clinic), demographic_summary)
by_clinic_demographic
I have tried to design a function that will work:
analysis_func <- function(x=df$StudyID) {
list1 <- list("Min" = min(x,na.rm = TRUE),
"Median" = median(x,na.rm = TRUE),
"Mean ± SD" = qwraps2::mean_sd(x,na_rm = TRUE),
"Max" = max(x,na.rm = TRUE),
"NA (Not factored in analysis)" = percent(sum(is.na(x)) /length(x)))
#str(list1)
return(list1)
}
When I then go to call this function in a new list:
assessment_summary <-
list("Mother Age" = analysis_func(.data$MotherAge),,
I get the error: Error: x
must be a formula
When I add ~ after the = sign, so for example:
"Min" = ~ min(x,na.rm = TRUE)
I then get the error: Error in FUN(X[[i]], ...) : only defined on a data frame with all numeric variables
Here is a simplified version to highlight the issue that I am having:
analysis_func <- function(x=df$StudyID) {
list1 <- list("Min" = ~ min(x,na.rm = TRUE),
"Median" = ~ median(x,na.rm = TRUE),
"Mean ± SD" = ~ qwraps2::mean_sd(x,na_rm = TRUE),
"Max" = ~ max(x,na.rm = TRUE),
"NA (Not factored in analysis)" = ~ percent(sum(is.na(x)) /length(x)))
return(list1)
}
test_summary <-
list("Scores" = analysis_func(.data$StudyID))
# test_stack <- summary_table(dplyr::group_by(dataframe, s), test_summary)
# test_stack
n = c(2, 3, 5, 4,10,12,rep(10,4))
s = c(rep("aa",5),rep("bb",5))
dataframe <- data.frame (n,s)
test_summary2 <-
list("Scores" =
list("Min" = ~ min(.data$n,na_rm = TRUE),
"Median" = ~ median(.data$n,na_rm = TRUE),
"Mean ± SD" = ~ qwraps2::mean_sd(.data$n,na_rm = TRUE),
"Max" = ~ max(.data$n,na_rm = TRUE),
"NA (Not factored in analysis)" = ~ percent(sum(is.na(.data$n)) /length(.data$n)))
)
test_stack <- summary_table(dplyr::group_by(dataframe, s), test_summary2)
test_stack
Any help would be appreciated.
We can use this function :
analysis_func <- function(x) {
list1 <- list(Min = min(x,na.rm = TRUE),
Median = median(x,na.rm = TRUE),
Mean = mean(x,na.rm = TRUE),
SD = sd(x, na.rm = TRUE),
Max = max(x,na.rm = TRUE),
"NA (Not factored in analysis)" = mean(is.na(x)))
return(list(list1))
}
and then call it by group.
library(dplyr)
dataframe %>% group_by(s) %>% summarise(summary_list = analysis_func(n))
# A tibble: 3 x 2
# s summary_list
# <fct> <list>
#1 aa <named list [6]>
#2 bb <named list [6]>
#3 cc <named list [6]>
If we want output as separate columns we can add unnest_wider
dataframe %>%
group_by(s) %>%
summarise(summary_list = analysis_func(n)) %>%
tidyr::unnest_wider(summary_list)
# A tibble: 3 x 7
# s Min Median Mean SD Max `NA (Not factored in analysis)`
# <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#1 aa 2 3 3 1.41 4 0
#2 bb 3 3 3 NA 3 0
#3 cc 5 5 5 NA 5 0