I think the complexity of this recursion is O(n^2/3)` by change variable and induction. but I'm not sure. Is this solution correct?
This is a fascinating recurrence and it does not solve to Θ(n). Rather, it appears to solve to Θ(n2/3).
To give an intuition for why this isn't likely to be Θ(n), let's imagine that we're dealing with a really, really large value of n. Then since
T(n) = (nT(√n) + n)1/2
under the assumption that T(√n) ≈ √n, we'd get that
T(n) = (n√n + n)1/2
= (n3/2 + n)1/2
≈ n3/4.
In other words, assuming that T(n) = Θ(n) would give us a different value of T(n) as n gets large.
On the other hand, let's assume that T(n) = Θ(n2/3). Then the same calculation gives us that
T(n) = (nT(n) + n)1/2
= (n · n2/3 + n)1/2
≈ (n4/3)1/2
= n2/3,
which is consistent with itself.
To validate this, I wrote a short program that printed out different values of T(n) given different inputs and plotted the results. Here's the version of T(n) that I wrote up:
double T(double n) {
if (n <= 2) return n;
return sqrt(n * T(sqrt(n)) + n);
}
I decided to use 2 as a base case, since repeatedly taking square roots will never let n drop to one. I also decided to use real-valued arguments rather than discrete integer values just to make the math easier.
If you plot the values of T(n), you get this curve:
This doesn't look like what I'd expect from a linear plot. To figure out what this was, I plotted it on a log/log plot, which has the nice property that all polynomial functions get converted to straight lines whose slope is equal to the exponent. Here's the result:
I consulted my Handy Neighborhood Regression Software and asked it to determine the slope of this line. Here's what it gave back:
Slope: 0.653170918815869
R2: 0.999942627574643
That's a very good fit, and the slope of 0.653 is pretty close to 2/3. So that's more empirical evidence supporting that the recurrence solves to Θ(n2/3).
All that's left to do now is to work out the math. We'll solve this recurrence using a series of substitutions.
First, I'm generally not that comfortable working with exponents in the way that this recurrence uses them, so let's take the log of both sides. (Throughout this exposition, I'll use lg n to mean log2 n).
lg T(n) = lg (nT(√n) + n)1/2
= (1/2) lg (nT(√n) + n)
= (1/2) lg(T(√n) + 1) + (1/2)lg n
≈ (1/2) lg T(√n) + (1/2) lg n
Now, let's define S(n) = lg T(n). Then we have
S(n) = lg T(n)
≈ (1/2) lg T(√ n) + (1/2) lg n
= (1/2) S(√ n) + (1/2) lg n
That's a lot easier to work with, though we still have the problem of the recurrence shrinking by powers each time. To address this, let's do one more substitution, which is a fairly common one when working with these sorts of expressions. Let's define R(n) = S(2n). Then we have that
R(n) = S(2n)
≈ (1/2)S(√2n) + (1/2) lg 2n
= (1/2)S(2n/2) + (1/2) n
= (1/2) R(n / 2) + (1/2) n
Great! All that's left to do now is to solve R(n).
Now, there is a slight catch here. We could immediately use the Master Theorem to conclude that R(n) = Θ(n). The problem with this is that just knowing that R(n) = Θ(n) won't allow us to determine what T(n) is. Specifically, let's suppose that we just know R(n) = Θ(n). Then we could say that
S(n) = S(2lg n) = R(lg n) = Θ(log n)
to get that S(n) = Θ(log n). However, we get stuck when trying to solve for T(n) in terms of S(n). Specifically, we know that
T(n) = 2S(n) = 2Θ(log n),
but we cannot go from this to saying that T(n) = Θ(n). The reason is that the hidden coefficient in the Θ(log n) is significant here. Specifically, if S(n) = k lg n, then we have that
2k lg n = 2lg nk = nk,
so the leading coefficient of the logarithm will end up determining the exponent on the polynomial. As a result, when solving R, we need to determine the exact coefficient of the linear term, which translates into the exact coefficient of the logarithmic term for S.
So let's jump back to R(n), which we know is
R(n) ≈ (1/2) R(n/2) + (1/2)n.
If we iterate this a few times, we see this pattern:
R(n) ≈ (1/2) R(n/2) + (1/2)n
≈ (1/2)((1/2) R(n/4) + (1/4)n) + (1/2)n
≈ (1/4)R(n/4) + (1/8)n + (1/2)n
≈ (1/4)((1/2)R(n/8) + n/8) + (1/8)n + (1/2)n
≈ (1/8)R(n/8) + (1/32)n + (1/8)n + (1/2)n.
The pattern appears to be that, after k iterations, we get that
R(n) ≈ (1/2k)R(n/2k) + n(1/2 + 1/8 + 1/32 + 1/128 + ... + 1/22k+1).
This means we should look at the sum
(1/2) + (1/8) + (1/32) + (1/128) + ...
This is
(1/2)(1 + 1/4 + 1/16 + 1/64 + ... )
which, as the sum of a geometric series, solves to
(1/2)(4/3)
= 2/3.
Hey, look! It's the 2/3 we were talking about earlier. This means that R(n) works out to approximately (2/3)n + c for some constant c that depends on the base case of the recurrence. Therefore, we see that
T(n) = 2S(n)
= 2S(2lg n)
= 2R(lg n)
≈ 2(2/3)lg n + c
= 2lg n2/3 + c
= 2c 2lg n2/3
= 2c n2/3
= Θ(n2/3)
Which matches the theoretically predicted and empirically observed values from earlier.
This was a very fun problem to work through and I'll admit I'm surprised by the answer! I am a bit nervous, though, that I may have missed something when going from
lg T(n) = (1/2) lg (T(√n) + 1) + (1/2) lg n
to
lg T(n) ≈ (1/2) lg T(√ n) + (1/2) lg n.
It's possible that this +1 term actually introduces some other term into the recurrence that I didn't recognize. For example, is there an O(log log n) term that arises as a result? That wouldn't surprise me, given that we have a recurrence that shrinks by a square root. However, I've done some simple data explorations and I'm not seeing any terms in there that look like there's a double log involved.
Hope this helps!