Search code examples
pythonpandasnumpyfinancepanel-data

Pandas Panel Data - Shifting values by two taking into consideration year gaps


I am currently working with a panel data of financial information on pandas, therefore working with different companies across different years. I am trying to generate a column of the $ invested shifted by 2 time periods. Hence, reporting the value of time t also at t+2.

Normally, to lag a variable, I would use df.groupby('tic')['investments'].shift(2) , however unfortunately my data is a bit spotty and therefore for the same company I might have a gap in the years. Just to give you an idea, here is an example of my df:

       datadate    fyear       tic   invest   
0    31/12/1998     1997      AAPL     12.3  
1    31/12/1999     1998      AAPL     14.5
2    31/12/2002     2002      AAPL      9.7   
3    31/12/2003     2003      AAPL     21.8   
4    31/12/2004     2004      AAPL     21.4
5    31/12/2005     2005      AAPL     18.9   
6    31/05/2008     2008      TSLA     11.5    
7    31/05/2009     2009      TSLA     13.7    
8    31/05/2010     2010      TSLA     19.4 
9    31/05/2011     2011      TSLA     14.5   
10   31/05/2014     2013      TSLA     14.8 
..      ...         ..         ..      ..    

Therefore, what I am trying to achieve is the following:

       datadate    fyear       tic   invest   l2_invest
0    31/12/1998     1997      AAPL     12.3         NaN
1    31/12/1999     1998      AAPL     14.5         NaN
2    31/12/2002     2002      AAPL      9.7         NaN
3    31/12/2003     2003      AAPL     21.8         NaN
4    31/12/2004     2004      AAPL     21.4         9.7
5    31/12/2005     2005      AAPL     18.9        21.8
6    31/05/2008     2008      TSLA     11.5         NaN
7    31/05/2009     2009      TSLA     13.7         NaN
8    31/05/2010     2010      TSLA     19.4        11.5
9    31/05/2011     2011      TSLA     14.5        13.7
10   31/05/2014     2013      TSLA     14.8        19.4
..      ...         ..         ..      ..    

Thank you in advance for your help :)


Solution

  • Provided that the 'datadate' column is the table's index (and of type datetime64), the following code should produce the desired additional column:

    df.groupby('tic')['invest'].shift(1, freq=pd.DateOffset(years=2))
    

    Edit: it is still necessary to append this new column to the original table. Here are some more details.

    First, make sure the 'datadate' column is of type datetime64:

    df['datadate'] = pd.to_datetime(df['datadate'])
    

    Then let's create the new column and append it to our table:

    new_column = (df.set_index('datadate')
                    .groupby('tic')['invest']
                    .shift(1, freq=pd.DateOffset(years=2)))
    df.set_index(['tic', 'datadate'], inplace=True)
    df['l2_invest'] = new_column
    df.reset_index(inplace=True)
    

    Starting with the original table, this produces

         tic   datadate  fyear  invest  l2_invest
    0   AAPL 1998-12-31   1997    12.3        NaN
    1   AAPL 1999-12-31   1998    14.5        NaN
    2   AAPL 2002-12-31   2002     9.7        NaN
    3   AAPL 2003-12-31   2003    21.8        NaN
    4   AAPL 2004-12-31   2004    21.4        9.7
    5   AAPL 2005-12-31   2005    18.9       21.8
    6   TSLA 2008-05-31   2008    11.5        NaN
    7   TSLA 2009-05-31   2009    13.7        NaN
    8   TSLA 2010-05-31   2010    19.4       11.5
    9   TSLA 2011-05-31   2011    14.5       13.7
    10  TSLA 2014-05-31   2013    14.8        NaN