I have the following code, I am calculating the percent growth in the data points and then I calculate the change in the percent growth, what I am looking for is to be able to add a column where I count the number of readings where the percent growth change is negative
df <- data.frame(id = c(1,2,3,4,5,6,7,8,9,10,11,12), data = c(19, 19, 27, 27, 38, 42, 47, 48, 49, 50, 51, 53))
df <- mutate(df, pct_growth = (data - lag(data))/lag(data))
df <- mutate(df, pct_growth_change = pct_growth - lag(pct_growth))
df$pct_growth_streak <- 0
df <- dplyr::mutate(df, pct_growth_streak = ifelse(pct_growth_change <=0, lag(pct_growth_streak)+1,0) )
What I am getting as the output is the following
id data pct_growth pct_growth_change pct_growth_streak
1 1 19 NA NA NA
2 2 19 0.00000000 NA NA
3 3 27 0.42105263 0.4210526316 0
4 4 27 0.00000000 -0.4210526316 1
5 5 38 0.40740741 0.4074074074 0
6 6 42 0.10526316 -0.3021442495 1
7 7 47 0.11904762 0.0137844612 0
8 8 48 0.02127660 -0.0977710233 1
9 9 49 0.02083333 -0.0004432624 1
10 10 50 0.02040816 -0.0004251701 1
11 11 51 0.02000000 -0.0004081633 1
12 12 53 0.03921569 0.0192156863 0
And what I need is
id data pct_growth pct_growth_change pct_growth_streak
1 1 19 NA NA NA
2 2 19 0.00000000 NA NA
3 3 27 0.42105263 0.4210526316 0
4 4 27 0.00000000 -0.4210526316 1
5 5 38 0.40740741 0.4074074074 0
6 6 42 0.10526316 -0.3021442495 1
7 7 47 0.11904762 0.0137844612 0
8 8 48 0.02127660 -0.0977710233 1
9 9 49 0.02083333 -0.0004432624 2
10 10 50 0.02040816 -0.0004251701 3
11 11 51 0.02000000 -0.0004081633 4
12 12 53 0.03921569 0.0192156863 0
We can use rleid
to create groups of consecutive streaks and calculate cumsum
over it.
library(data.table)
setDT(df)[, pct_growth_streak := cumsum(pct_growth_streak),
rleid(pct_growth_streak)]
df
# id data pct_growth pct_growth_change pct_growth_streak
# 1: 1 19 NA NA NA
# 2: 2 19 0.00000000 NA NA
# 3: 3 27 0.42105263 0.4210526316 0
# 4: 4 27 0.00000000 -0.4210526316 1
# 5: 5 38 0.40740741 0.4074074074 0
# 6: 6 42 0.10526316 -0.3021442495 1
# 7: 7 47 0.11904762 0.0137844612 0
# 8: 8 48 0.02127660 -0.0977710233 1
# 9: 9 49 0.02083333 -0.0004432624 2
#10: 10 50 0.02040816 -0.0004251701 3
#11: 11 51 0.02000000 -0.0004081633 4
#12: 12 53 0.03921569 0.0192156863 0
We can use it dplyr
too :
library(dplyr)
df %>%
group_by(grp = rleid(pct_growth_streak)) %>%
mutate(pct_growth_streak = cumsum(pct_growth_streak))
Or with ave
:
with(df, ave(pct_growth_streak, rleid(pct_growth_streak), FUN = cumsum))