I am in the following situation:
S=QQ[x_0..x_n];
for i from 0 to n do for j from i to n do d_{i,j} = x_i*x_j;
Now I would like to construct a vector whose elements are
d_{0,0}=x_0^2,d_{0,1}=x_0*x_1,...,d_{0,n}=x_0*x_n,d_{1,1}=x_1^2,d_{1,2}=x_1*x_2,...,d_{n,n}=x_n^2
How can I do this in MacAulay2? Thank you very much.
This may be what you are looking for.
m=ideal(S_*)
m^2_*
The _*
operator gets the generators of an ideal. So, m
is the maximal ideal, and you are looking for the generators of m^2
.
Alternatively
flatten entries basis(2,S)
which simply gives you the vector basis of the ring S in degree 2.