So I have some code to generate a json response from an api:
r4 = requests.get(url, params=mlp)
mlpr = r4.json()
1 row of the response looks like this.
'command': 'SELECT', 'rowCount': 134, 'oid': None, 'rows': [{'match_id': 5334428840, 'start_time': 1586029157, 'leagueid': 11823, 'patch': '7.25', 'name': 'ESL One Los Angeles 2020 Online powered by Intel', 'radiant_team': 'Cyber Legacy', 'dire_team': 'B8', 'picks_bans': [{'is_pick': False, 'hero_id': 98, 'team': 0, 'order': 0}, {'is_pick': False, 'hero_id': 95, 'team': 1, 'order': 1}, {'is_pick': False, 'hero_id': 66, 'team': 0, 'order': 2}, {'is_pick': False, 'hero_id': 43, 'team': 1, 'order': 3}, {'is_pick': False, 'hero_id': 49, 'team': 0, 'order': 4}, {'is_pick': False, 'hero_id': 110, 'team': 1, 'order': 5}, {'is_pick': False, 'hero_id': 79, 'team': 0, 'order': 6}, {'is_pick': False, 'hero_id': 106, 'team': 1, 'order': 7}, {'is_pick': True, 'hero_id': 96, 'team': 0, 'order': 8}, {'is_pick': True, 'hero_id': 86, 'team': 1, 'order': 9}, {'is_pick': True, 'hero_id': 129, 'team': 1, 'order': 10}, {'is_pick': True, 'hero_id': 50, 'team': 0, 'order': 11}, {'is_pick': False, 'hero_id': 12, 'team': 0, 'order': 12}, {'is_pick': False, 'hero_id': 77, 'team': 1, 'order': 13}, {'is_pick': True, 'hero_id': 128, 'team': 1, 'order': 14}, {'is_pick': True, 'hero_id': 121, 'team': 0, 'order': 15}, {'is_pick': True, 'hero_id': 41, 'team': 1, 'order': 16}, {'is_pick': True, 'hero_id': 42, 'team': 0, 'order': 17}, {'is_pick': False, 'hero_id': 126, 'team': 1, 'order': 18}, {'is_pick': False, 'hero_id': 65, 'team': 0, 'order': 19}, {'is_pick': True, 'hero_id': 31, 'team': 0, 'order': 20}, {'is_pick': True, 'hero_id': 45, 'team': 1, 'order': 21}]}
As you can see the picks_bans "Column has a nested dictionary of 3 additional columns I need to pull out and spread across each match ID.
Here is the code I am using to put my response into an initial Dataframe
, but it is only getting me to the initial level.
mlpr_df = pd.DataFrame(mlpr.get('rows'))
mlpr_df
[example dataframe][1]
How do I go about unnesting the picks_bans
column appropriately?
Edit: I attempted to change the code to:
r4 = requests.get(url, params=mlp)
mlpr = r4.json()
data = mlpr.get('rows')
df = pd.concat([pd.DataFrame(data),
json_normalize(data['picks_bans'])],
axis=1).drop('picks_bans', 1)
I receive and error that says "list indices must be integers or slices, not str"
json_normalize
is what you are looking for.
As a trick, I'm using the list of keys of the first row of data minus the field to expand to get the list of fields to use as metadata -- it's easier to write and more resilient. I've put the name of the arguments in the call to be more explicit.
import pandas as pd
from pandas import json_normalize
df = json_normalize(data, record_path="picks_bans",
meta=[col for col in data[0].keys() if col != "picks_bans"])
df.head()
# is_pick hero_id team order match_id start_time leagueid patch name radiant_team dire_team
# -- --------- --------- ------ ------- ---------- ------------ ---------- ------- ------------------------------------------------ -------------- -----------
# 0 False 98 0 0 5334428840 1586029157 11823 7.25 ESL One Los Angeles 2020 Online powered by Intel Cyber Legacy B8
# 1 False 95 1 1 5334428840 1586029157 11823 7.25 ESL One Los Angeles 2020 Online powered by Intel Cyber Legacy B8
# 2 False 66 0 2 5334428840 1586029157 11823 7.25 ESL One Los Angeles 2020 Online powered by Intel Cyber Legacy B8
Data sample
data = [{'match_id': 5334428840, 'start_time': 1586029157, 'leagueid': 11823, 'patch': '7.25', 'name': 'ESL One Los Angeles 2020 Online powered by Intel', 'radiant_team': 'Cyber Legacy', 'dire_team': 'B8', 'picks_bans':
[{'is_pick': False, 'hero_id': 98, 'team': 0, 'order': 0}, {'is_pick': False, 'hero_id': 95, 'team': 1, 'order': 1}, {'is_pick': False, 'hero_id': 66, 'team': 0, 'order': 2},
{'is_pick': False, 'hero_id': 43, 'team': 1, 'order': 3}, {'is_pick': False, 'hero_id': 49, 'team': 0, 'order': 4}, {'is_pick': False, 'hero_id': 110, 'team': 1, 'order': 5},
{'is_pick': False, 'hero_id': 79, 'team': 0, 'order': 6}, {'is_pick': False, 'hero_id': 106, 'team': 1, 'order': 7}, {'is_pick': True, 'hero_id': 96, 'team': 0, 'order': 8},
{'is_pick': True, 'hero_id': 86, 'team': 1, 'order': 9}, {'is_pick': True, 'hero_id': 129, 'team': 1, 'order': 10}, {'is_pick': True, 'hero_id': 50, 'team': 0, 'order': 11},
{'is_pick': False, 'hero_id': 12, 'team': 0, 'order': 12}, {'is_pick': False, 'hero_id': 77, 'team': 1, 'order': 13}, {'is_pick': True, 'hero_id': 128, 'team': 1, 'order': 14},
{'is_pick': True, 'hero_id': 121, 'team': 0, 'order': 15}, {'is_pick': True, 'hero_id': 41, 'team': 1, 'order': 16}, {'is_pick': True, 'hero_id': 42, 'team': 0, 'order': 17},
{'is_pick': False, 'hero_id': 126, 'team': 1, 'order': 18}, {'is_pick': False, 'hero_id': 65, 'team': 0, 'order': 19}, {'is_pick': True, 'hero_id': 31, 'team': 0, 'order': 20},
{'is_pick': True, 'hero_id': 45, 'team': 1, 'order': 21}]},
{'match_id': 5334428840, 'start_time': 1586029157, 'leagueid': 11823, 'patch': '7.25', 'name': 'ESL One Los Angeles 2020 Online powered by Intel', 'radiant_team': 'Cyber Legacy', 'dire_team': 'B8', 'picks_bans':
[{'is_pick': False, 'hero_id': 98, 'team': 0, 'order': 0}, {'is_pick': False, 'hero_id': 95, 'team': 1, 'order': 1}, {'is_pick': False, 'hero_id': 66, 'team': 0, 'order': 2},
{'is_pick': False, 'hero_id': 43, 'team': 1, 'order': 3}, {'is_pick': False, 'hero_id': 49, 'team': 0, 'order': 4}, {'is_pick': False, 'hero_id': 110, 'team': 1, 'order': 5},
{'is_pick': False, 'hero_id': 79, 'team': 0, 'order': 6}, {'is_pick': False, 'hero_id': 106, 'team': 1, 'order': 7}, {'is_pick': True, 'hero_id': 96, 'team': 0, 'order': 8},
{'is_pick': True, 'hero_id': 86, 'team': 1, 'order': 9}, {'is_pick': True, 'hero_id': 129, 'team': 1, 'order': 10}, {'is_pick': True, 'hero_id': 50, 'team': 0, 'order': 11},
{'is_pick': False, 'hero_id': 12, 'team': 0, 'order': 12}, {'is_pick': False, 'hero_id': 77, 'team': 1, 'order': 13}, {'is_pick': True, 'hero_id': 128, 'team': 1, 'order': 14},
{'is_pick': True, 'hero_id': 121, 'team': 0, 'order': 15}, {'is_pick': True, 'hero_id': 41, 'team': 1, 'order': 16}, {'is_pick': True, 'hero_id': 42, 'team': 0, 'order': 17},
{'is_pick': False, 'hero_id': 126, 'team': 1, 'order': 18}, {'is_pick': False, 'hero_id': 65, 'team': 0, 'order': 19}, {'is_pick': True, 'hero_id': 31, 'team': 0, 'order': 20},
{'is_pick': True, 'hero_id': 45, 'team': 1, 'order': 21}]}
]