Search code examples
apache-sparkapache-spark-sqlnormal-distributionoutliersbucket

How to find percentile based threshold when there is a data skew using Spark?


I have a datset -

I am trying to find a threshold for similarity_score (how similar the variation and original is) that I can use to filter out the less relevant variations. Higher the similarity_score -more similar.

+--------+----------------------+---------------------+
|original|variation             |similarity_score     |
+--------+----------------------+---------------------+
|pencils |pencils               |0.982669767327994    |
|pencils |pencils ticonderoga   |0.8875609147113148   |
|pencils |pencils bulk          |0.5536876549778099   |
|pencils |pencils for kids      |0.39102614317876977  |
|pencils |mechanical pencils    |0.3837525124443511   |
|pencils |school supplies       |0.36800207529412093  |
|pencils |pencils mechanical    |0.20423055289450207  |
|pencils |black pencils         |0.08241323295822053  |
|pencils |erasers               |0.08101804016695552  |
|pencils |papermate pencils     |0.08091683972455012  |
|pencils |pensils for kids      |0.07299289422964994  |
|pencils |loose leaf paper      |0.07113136587149338  |
|pencils |pencil sharpener      |0.0684130629091813   |
|pencils |pencils with sayings  |0.06350472916694737  |
|pencils |cute pencils          |0.058316002229988215 |
|pencils |colored pencils       |0.05552992878175486  |
|pencils |pensils sharpener     |0.0491689934641725   |
|pencils |pens                  |0.048082618970934014 |
|pencils |mechanical pencils 0.5|0.04730075285308284  |
|pencils |pencil box            |0.04537707727651545  |
|pencils |pencil case           |0.04408623373105654  |
|pencils |pensils 0.5           |0.042054450870644036 |
|pencils |crayons               |0.03968021119078101  |
|pencils |cool pencils          |0.03952088726420226  |
|pencils |pen                   |0.037752562111173546 |
|pencils |cool pensils          |0.037510831184747497 |
|pencils |glue sticks           |0.032787653384488386 |
|pencils |drawing pencils       |0.032398405257143804 |
|pencils |cute pensils          |0.031057982991620214 |
|pencils |cool penciles         |0.02964868546657146  |
|pencils |art pencils           |0.027646328736291175 |
|pencils |index cards           |0.02744109743018355  |
|pencils |folders               |0.027070809949858353 |
|pencils |pensil cases          |0.0245633981485688   |
|pencils |golf pencils          |0.02411058428627058  |
|pencils |notebooks             |0.023534237276835582 |
|pencils |binder                |0.02262728927378412  |
|pencils |pens bulk             |0.021022196010267332 |
|pencils |folders with pockets  |0.020883099832185503 |
|pencils |amazon basics pens    |0.02010866875890696  |
|pencils |notebook              |0.02002518175509854  |
|pencils |pencil grips          |0.01712161261500511  |
|pencils |scissors              |0.014319987175720715 |
|pencils |paper                 |0.013844962316376306 |
|pencils |tissues               |0.012853953323240916 |
|pencils |sketch book           |0.011383006178195793 |
|pencils |colored pens          |0.010608837622836953 |
|pencils |printer paper         |0.007159662743211316 |
|pencils |pencil holder         |0.005219375924877335 |
|pencils |copy paper            |0.0048398059676751275|
|pencils |paper clips           |0.004323946307993657 |
|pencils |backpack              |0.002456516357354455 |
|pencils |amazonbasics          |0.002386583749856832 |
|pencils |desk organizer        |0.0014871301773208652|
|pencils |fun penciles          |7.114920197678272E-4 |
|pencils |pensils crayola       |5.863935694892475E-4 |
|pencils |paper towels          |4.956030568975998E-4 |
|pencils |pensils usa           |3.074806676441355E-4 |
|pencils |golf pensils          |1.6343203531543173E-4|
|pencils |carpenter penciles    |1.537148743666664E-4 |
|pencils |usb extension cable   |9.276356621610018E-5 |
+--------+----------------------+---------------------+

When I tried -

spark.sql("select percentile_approx(similarity_score, 0.3) as threshold from Test").show()
+--------------------+
|           threshold|
+--------------------+
|0.014319987175720715|
+--------------------+

But the issue here, this works fine for normally distributed data but from the example above - you can use there is a data skew and 0.01 wont suitable for this. Is there a way find the threshold such outliers ?


Solution

  • You may choose to eliminate outlier before running your percentile (although keep in mind that PERCENTILE as a function is a great way to handle outliers.

    At any rate, to cut the tails of your distribution, you can apply some filtering operations.

    First, create a Window partitioning :

    import org.apache.spark.sql.expressions.Window
    val byGroup = Window.partitionBy(lit(1))
    

    Then, cut anything beyond the 1.96 variance:

    val results = spark.sql("""SELECT value FROM table  """)
    .withColumn("mn", avg($"value") over byGroup)
    .withColumn("v", var_pop($"value") over byGroup)
    .filter(  $"mn" + lit(1.96) * $"v"  >=  $"value" )
    .filter(  $"mn" - lit(1.96) * $"v"  <=  $"value" )
    

    This should cut 5% of the distribution at each side of the tail. See here for more info: https://en.wikipedia.org/wiki/1.96

    Screenshot: Example code