I am trying to compute the covariance matrix which maximises the likelihood estimate manually without using the numpy library,but I cannot seem to get the right answer. I am trying to go by this formula:
I know i'm calculating the means correctly. So there must be an issue with the part where I actually compute the covariance but I have no idea where? This is my code:
mat = [[1,2,3],[4,6,8],[3,5,7]]
#now calc covariance for each element of the matrix
Cov = []
for j in range(len(means)):
sum = 0
covs = []
for k in range(len(means)):
for i in range(len(means)):
sum += ((mat[i][j] - means[j]) * (mat[i][k] - means[k]))
result = sum/ len(means)
covs.append(result)
Cov.append(covs)
print(np.reshape(S,(3,3)))
This is what I get:
[[ 1.55555556 3.66666667 6.33333333]
[ 2.11111111 5. 8.66666667]
[ 2.66666667 6.33333333 11. ]]
This is what i'm supposed to get:
[[1.55555556 2.11111111 2.66666667]
[2.11111111 2.88888889 3.66666667]
[2.66666667 3.66666667 4.66666667]]
You should reset the sum for each entry of the covariance matrix,
covs = []
for k in range(len(means)):
sum = 0
for i in range(len(means)):
sum += ((mat[i][j] - means[j]) * (mat[i][k] - means[k]))
covariance = sum/ len(means)
covs.append(covariance)
You could shorten that a bit as
covs = []
for k in range(len(means)):
terms = ( (mat[i][j] - means[j]) * (mat[i][k] - means[k]) for i in range(len(means)) )
covariance = sum(terms) / len(means)
covs.append(covariance)
Be sure to clear the workspace so that sum
is again a built-in function and not a number.