I have a number of certain objects which need to run a specific function at specific ever-changing intervals, again and again, until they decide they are done.
For example, one object may need to wait 30 seconds, run, wait 60 seconds, run, wait 10 seconds, run... You get the point, and this could be going on for 30-120 different objects, running the exact same kind of function.
I was thinking that simply having a function that sleeps for the exact interval would solve my problem, but, correct me if I'm wrong, I remembered that thread pools can only run a certain number of threads at any given time (12 for me). How do I get around this limit?
class Thing(object):
def getCurrentPeriod(self):
return random.randint(5, 30) # Some ever changing period of time
def refresh(self):
doThings() # A long running task that is disk and network intensive
def waitRefresh(self):
period = self.getCurrentPeriod()
time.sleep(period) # Wait that period out
self.refresh()
return self.needRefresh()
# Boolean if it needs to restart - Not sure about how to reschedule,
# or specifically where to connect the worker emit when it finishes
# to make sure this *specific* Thing obj gets it's waitRefresh func called again.
class App(QMainWindow):
def __init__(self, *args, **kwargs):
super(MainWindow, self).__init__(*args, **kwargs)
self.threadpool = QThreadPool()
# Add initial objects to pool (other portions of app may add more over time)
for thing in self.acquireThings():
worker = Worker(thing.waitRefresh)
self.threadpool.start(worker)
Doesn't include the WorkerSignals class nor the QRunnable subclass, this example includes what I usually do. The example is tackling the same problem, but in a (most likely) inefficient way.
edit: New example with complete working example of how time.sleep
does not pause the thread and allow others to work. I feel that async
may be the only implementation, but is there a quick fix so I don't have to alter my entire app?
Here's what it looks like when you try to sleep more than 12 threads.
The ultimate solution came when I decided to actually try the QTimer
class. Perhaps there are more optimized solutions, but this one seems to hit all the checkboxes, even if it's worryingly simple.
import random
import time
import traceback
from functools import partial
from PyQt5.QtCore import *
from PyQt5.QtGui import QFont
from PyQt5.QtWidgets import *
class WorkerSignals(QObject):
"""
Represents the signals a Worker can emit.
"""
finished = pyqtSignal()
starting = pyqtSignal(int) # ID of thread
result = pyqtSignal(tuple) # Tuple refresh result, result and ID
class Worker(QRunnable):
"""
A worker designed to tell when it's starting, when it's finished and the result.
Designed to work around Thread.refresh().
"""
def __init__(self, fn, thread_id, *args, **kwargs):
super(Worker, self).__init__()
# Store constructor arguments (re-used for processing)
self.fn = fn
self.id = thread_id
self.args = args
self.kwargs = kwargs
self.signals = WorkerSignals()
@pyqtSlot()
def run(self):
"""
Runs a given method, and emits the result with the Worker's coordinated ID.
"""
try:
self.signals.starting.emit(self.id) # Thread is now finally ready to work.
result = self.fn(*self.args, **self.kwargs) # Refresh Thread!
self.signals.result.emit(result) # Thread is finished, emit result tuple.
except:
traceback.print_exc()
finally:
self.signals.finished.emit() # Done
class Thread(object):
"""
Basic Rules for a Thread Object:
Cannot store the next timestamp on the object (it's a database object, I don't believe it's good practice
to be creating sessions over and over to simply read/write the access time.
ID and Active are allowed as booleans.
"""
i = -1
def __init__(self):
self.id = Thread.nextID()
self.active = True
self.refreshes = 0
def refresh(self) -> tuple:
"""
'Refreshes' a thread. Waits a specific period, then decides whether Thread object should be deactivated or
returned from additional refreshes. Chance of deactivation lowers with each refresh.
:return: The refresh result, a tuple with a boolean and the thread's ID (for identifying it later)
"""
# Represents my SQL Alchemy Model's refresh() function
self.refreshes += 1
time.sleep(random.randint(2, 5))
if random.random() <= max(0.1, 1.0 - ((self.refreshes + 5) / 10)):
self.active = False
return self.active, self.id
@staticmethod
def getRefreshTime() -> float:
"""
Represents the amount of time before a thread should be refreshed.
Should NOT be used to determine whether the thread is still active or not.
:return: The time period that should be waited.
"""
return random.uniform(10, 300)
@staticmethod
def nextID() -> int:
"""
Returns integer thread IDs in sequence to remove possibility of duplicate IDs.
:return: Integer Thread ID
"""
Thread.i += 1
return Thread.i
def __repr__(self):
return f'Thread(id={self.id} active={self.active})'
class MainWindow(QMainWindow):
"""
GUI containing a Label, Button and ListWidget showing all the active sleeping/working threads.
Manages a threadpool, a number of background singleshot timers, etc.
"""
def __init__(self, *args, **kwargs):
super(MainWindow, self).__init__(*args, **kwargs)
# Widgets Setup
layout = QVBoxLayout()
self.list = QListWidget()
self.l = QLabel("Total Active: 0")
self.button = QPushButton("Refresh List")
self.button.pressed.connect(self.refreshList)
self.button.setDisabled(True)
layout.addWidget(self.l)
layout.addWidget(self.button)
layout.addWidget(self.list)
w = QWidget()
w.setLayout(layout)
self.setCentralWidget(w)
self.show()
# Periodically add threads to the pool.
self.poolTimer = QTimer()
self.poolTimer.setInterval(5_000)
self.poolTimer.timeout.connect(self.addThreads)
# Threading Setup
self.threadpool = QThreadPool()
print("Multithreading with maximum %d threads" % self.threadpool.maxThreadCount())
self.active, self.threads = {}, {}
# Add a number of threads to start with.
for _ in range(random.randint(5, 16)):
self.setupThread(Thread())
self.poolTimer.start()
def refreshList(self):
"""
Refreshes the ListWidget in the GUI with all the active/sleeping/working threads.
"""
self.list.clear()
bold = QFont()
bold.setBold(True)
active = 0
for thread in self.threads.values():
item = QListWidgetItem(
f'Thread {thread.id}/{thread.refreshes}')
# Bold a thread if it's working
if self.active[thread.id]:
active += 1
item.setFont(bold)
self.list.addItem(item)
self.l.setText(f'Total Active: {active}/{len(self.threads)}')
def refreshResult(self, result) -> None:
"""
When a thread is finished, the result determines it's next course of action, which is either
to return to the pool again, or delete itself.
:param result: A tuple containing the result (bool) and the connected Thread ID.
"""
self.active[result[1]] = False
if result[0]:
print(f'Restarting Thread {result[1]}')
self.setupThread(self.threads[result[1]]) # Add by ID, which would normally be a database GET
else:
print(f'Thread {result[1]} shutting down.')
del self.active[result[1]]
del self.threads[result[1]]
self.refreshList()
def updateActivity(self, thread_id) -> None:
"""
Connected to the starting signal, helps signal when a thread is actually being refreshed.
:param thread_id: The Thread ID
"""
print(f'Thread {thread_id} is now active/working.')
self.active[thread_id] = True
def refresh(self, thread):
"""
Adds a new worker to the threadpool to be refreshed.
Can't be considered a real start to the thread.refresh function, as the pool has a max of 12 workers at any time.
The 'starting' signal can tell us when a specific thread is actually being refreshed, and is represented
as a Bold element in the list.
:param thread: A thread instance.
"""
print(f'Adding Thread {thread.id} to the pool.')
worker = Worker(thread.refresh, thread_id=thread.id)
worker.signals.result.connect(self.refreshResult)
worker.signals.starting.connect(self.updateActivity)
self.threadpool.start(worker)
# self.active[thread.id] = True
self.refreshList()
def setupThread(self, thread) -> None:
"""
Adds a new timer designated to start a specific thread.
:param thread: A thread instance.
"""
self.active[thread.id] = False
self.threads[thread.id] = thread
t = QTimer()
period = thread.getRefreshTime()
t.singleShot(period * 1000, partial(self.refresh, thread=thread))
print(f'Thread {thread.id} will start in {period} seconds.')
self.refreshList()
def addThreads(self):
"""
Adds a number of threads to the pool. Called automatically every couple seconds.
"""
add = max(0, 30 + random.randint(-5, 5) - len(self.threads))
if add > 0:
print(f'Adding {add} thread{"s" if add > 1 else ""}.')
for _ in range(add):
self.setupThread(Thread())
app = QApplication([])
window = MainWindow()
app.exec_()
When a Thread is requested, a Timer is created and singleShot
is fired on an extra function that will add it to the threadpool. This threadpool can handle up to 12 refreshing continious 'refreshing' threads, and signals allow the GUI to update the moment a change is found.
Thousands of 'Thread' objects can be waiting and it seems singleShot
is capable of adding them to the pool exactly when they need to be.
Signals help differentiate when a thread is sleeping
, working
and active
(but inactive
Thread objects are immediately removed).
The only caveats I can think of with this program is:
1) Can a QThread implementation beat it?
2) What happens to the QTimer
once it's singleshot
function has executed and fired? Will they be properly GC'd, or can thousands build up in the background consuming resources?