sql_list = ['(select * from table1 where rownum <= 100) alias1','(select * from table2 where rownum <= 100) alias2']
for sql_statement in sql_list: df = spark.read.format("jdbc").option("driver", jdbc_driver_name).option("url", db_url).option("dbtable", sql_statement).option("user", db_username).option("password", db_password).option("fetchSize", 100000).load()
df.write.format("parquet").mode("overwrite").save("s3://s3-location/" + sql_statement)
The source was an Oracle DB
I was able to run the array of queries and stored it on S3 in parquet but the naming used was the same as what is listed on sql_list, I would like to store the data to S3 with naming as alias1 and alias2 repectively.
Consider using a dictionary instead of a list since this is neater and flexible.
sql_list = {'alias1':'(select * from table1 where rownum <= 100) alias1',
'alias2': '(select * from table2 where rownum <= 100) alias2'}
for table,sql_statement in sql_list.items():
df = spark.read.format("jdbc").option("driver", jdbc_driver_name)\
.option("url",db_url)\
.option("dbtable", sql_statement)\
.option("user", db_username)\
.option("password", db_password)\
.option("fetchSize",100000).load()
df.write.format("parquet").mode("overwrite").save("s3://s3-location/" + table)
Else you will need to do some dirty split
df.write.format("parquet").mode("overwrite").save("s3://s3-location/" + sql_statement.split(' ')[-1])