I have df:
row_numbers ID code amount
1 med a 1
2 med a, b 1
3 med b, c 1
4 med c 1
5 med d 10
6 cad a, b 1
7 cad a, b, d 0
8 cad e 2
Pasted the above df:
I wanted to do groupby on column-ID and A)Combine the strings if substring/string matches(on column-code) B)sum the values of column-amount.
Expected results:
Explanation:
column-row_numbers has no role here in df. I just took here to explain the output.
A)grouping on column-ID and looking at column-code, row1 string i.e., a is matching with row2's sub string. row2's substring i.e., b is matching with row3's substring. row3's substring i.e., c is matching with string of row4 and Hence combining row1, row2, row3 and row4. row5 string is not matching with any of string/substring so it is separate group. B) Based on this adding row1, row2, row3 and row4 values. and row5 as separate group.
Thanks in advance for your time and thoughts:).
EDIT - 1
Pasting the real time.
Expected output:
Explanation:
have to do on grouping column-id and concatenating the values of column-code and summing the values of column-units and vol. It is color coded the matching(to be contacted) values of column-code. row1 has link with row5 and row9. row9 has inturn link with row3. Hence combining row1, row5, row9, row3. Simliarly row2 and row7 and so on. row8 has no link with any of the values with-in group-med(column-id) and hence will be as separate row.
Thanks!.
Update: From your latest sample data, this is not a simple data munging. There is no vectorized solution. It relates to graph theory. You need to find connected components within each group of ID
and do the calculation on each connected components.
Consider each string as a node
of graph. If 2 strings are overlapped, they are connected nodes. For every node
, you need to traverse all paths connected to it. Do calculation on all connected nodes through these paths. This traversal can be done by using Depth-first search logic.
However, before processing depth-first search, you need to preprocess strings to set
to check overlapping.
Method 1: Recursive
Do the following:
dfs
to recursively run depth-first searchgfunc
to use with groupby apply
. This function will traverse elements of each group of ID
and return the desired dataframe. replace
, split
and map
and assign it to a new column new_code
to df
ID
and apply
using function gfunc
. Call droplevel
and reset_index
to get the desired outputCodes as follows:
import numpy as np
def dfs(node, index, glist, g_checked_rows):
ret_arr = df.loc[index, ['code', 'amount', 'volume']].values
g_checked_rows.add(index)
for j, s in glist:
if j not in g_checked_rows and not node.isdisjoint(s):
t_arr = dfs(s, j, glist, g_checked_rows)
ret_arr[0] += ', ' + t_arr[0]
ret_arr[1:] += t_arr[1:]
return ret_arr
def gfunc(x):
checked_rows = set()
final = []
code_list = list(x.new_code.items())
for i, row in code_list:
if i not in checked_rows:
final.append(dfs(row, i, code_list, checked_rows))
return pd.DataFrame(final, columns=['code','units','vol'])
df['new_code'] = df.code.str.replace(' ','').str.split(',').map(set)
df_final = df.groupby('ID', sort=False).apply(gfunc).droplevel(1).reset_index()
Out[16]:
ID code units vol
0 med CO-96, CO-B15, CO-B15, CO-96, OA-18, OA-18 4 4
1 med CO-16, CO-B20, CO-16 3 3
2 med CO-252, CO-252, CO-45 3 3
3 med OA-258 1 1
4 cad PR-96, PR-96, CO-243 4 4
5 cad PR-87, OA-258, PR-87 3 3
Note: I assume your pandas version is 0.24+. If it is < 0.24, the last step you need to use reset_index
and drop
instead of droplevel
and reset_index
as follows
df_final = df.groupby('ID', sort=False).apply(gfunc).reset_index().drop('level_1', 1)
Method 2: Iterative
To make this complete, I implement a version of gfunc
using iterative process instead of recursive. Iterative process requires only one function.
However, the function is more complicated. The logic of iterative process as follows
deque
. Check if deque
not empty, pop the top node out.checked
, process it and mark it as checked
deque
deque
not empty, pop out a node from the top deque
and
process from step 2Code as follows:
def gfunc_iter(x):
checked_rows = set()
final = []
q = deque()
code_list = list(x.new_code.items())
code_list_rev = code_list[::-1]
for i, row in code_list:
if i not in checked_rows:
q.append((i, row))
ret_arr = np.array(['', 0, 0], dtype='O')
while (q):
n, node = q.pop()
if n in checked_rows:
continue
ret_arr_child = df.loc[n, ['code', 'amount', 'volume']].values
if not ret_arr[0]:
ret_arr = ret_arr_child.copy()
else:
ret_arr[0] += ', ' + ret_arr_child[0]
ret_arr[1:] += ret_arr_child[1:]
checked_rows.add(n)
#push to `q` all neighbors in the reversed list of nodes
for j, s in code_list_rev:
if j not in checked_rows and not node.isdisjoint(s):
q.append((j, s))
final.append(ret_arr)
return pd.DataFrame(final, columns=['code','units','vol'])
df['new_code'] = df.code.str.replace(' ','').str.split(',').map(set)
df_final = df.groupby('ID', sort=False).apply(gfunc_iter).droplevel(1).reset_index()