I am trying to make Scala Xgboost API available for my PySpark Notebook. And following this blog. However, keep on running into the below error:
spark._jvm.ml.dmlc.xgboost4j.scala.spark.XGBoostEstimator
<py4j.java_gateway.JavaPackage at 0x7fa650fe7a58>
from sparkxgb import XGBoostEstimator
xgboost = XGBoostEstimator(
featuresCol="features",
labelCol="Survival",
predictionCol="prediction"
)
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-18-1765fb9e3344> in <module>
4 featuresCol="features",
5 labelCol="Survival",
----> 6 predictionCol="prediction"
7 )
~/spark-assembly-2.4.0-twttr-kryo3-scala2128-hadoop2.9.2.t05/python/pyspark/__init__.py in wrapper(self, *args, **kwargs)
108 raise TypeError("Method %s forces keyword arguments." % func.__name__)
109 self._input_kwargs = kwargs
--> 110 return func(self, **kwargs)
111 return wrapper
112
~/local/spark-3536cd7a-6188-4ca8-b3d0-57d42cd01531/userFiles-0a0d90bc-96b4-43f2-bf21-00ae0e6f7309/sparkxgb.zip/sparkxgb/xgboost.py in __init__(self, checkpoint_path, checkpointInterval, missing, nthread, nworkers, silent, use_external_memory, baseMarginCol, featuresCol, labelCol, predictionCol, weightCol, base_score, booster, eval_metric, num_class, num_round, objective, seed, alpha, colsample_bytree, colsample_bylevel, eta, gamma, grow_policy, max_bin, max_delta_step, max_depth, min_child_weight, reg_lambda, scale_pos_weight, sketch_eps, subsample, tree_method, normalize_type, rate_drop, sample_type, skip_drop, lambda_bias)
113
114 super(XGBoostEstimator, self).__init__()
--> 115 self._java_obj = self._new_java_obj("ml.dmlc.xgboost4j.scala.spark.XGBoostEstimator", self.uid)
116 self._create_params_from_java()
117 self._setDefault(
~/spark-assembly-2.4.0-twttr-kryo3-scala2128-hadoop2.9.2.t05/python/pyspark/ml/wrapper.py in _new_java_obj(java_class, *args)
65 java_obj = getattr(java_obj, name)
66 java_args = [_py2java(sc, arg) for arg in args]
---> 67 return java_obj(*java_args)
68
69 @staticmethod
TypeError: 'JavaPackage' object is not callable
I already googled this error and tried the below things. I got all the ideas from this blog:
SPARK_DIST_CLASSPATH
. Already checked.$echo $SPARK_DIST_CLASSPATH | tr " " "\n" | grep 'xgboost4j' | rev | cut -d'/' -f1 | rev
xgboost4j-0.72.jar
xgboost4j-spark.72.jar
EXTRA_CLASSPATH
. - Done'export PYSPARK_SUBMIT_ARGS="--conf spark.jars=$SPARK_HOME/jars/* --conf spark.driver.extraClassPath=$SPARK_HOME/jars/* --conf spark.executor.extraClassPath=$SPARK_HOME/jars/* pyspark-shell"',
Hardware Info:
I found the problem, The problem was that the sparkxbg.zip
(which I downloaded over the internet) is written for xgboost4j-0.72
. However, my jars were from xgoost4j-0.9
. And the API has been completely changed. As a result, the 0.9 version didn't have any class named ml.dmlc.xgboost4j.scala.spark.XGBoostEstimator
. And hence the error.
You can see the difference in API here: release_0.72 vs v0.90