df <- data.frame(
time = c(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17),
var = c(12.69,16.35,20.29,25.08,30.81,38.75,45,49.16,55.15,62.852,68.63,76.64,82.47,85.68,89.14,91.86,95.28,98.17)
)
logisticmodel <- nls(var ~ SSlogis(time, phi1, phi2, phi3), data = df)
summary(logisticmodel)
coef(logisticmodel)
#predict(logisticmodel, data.frame(time = 18))
The output given by R is as follows:
phi1 phi2 phi3
105.737368 7.432555 3.852865
But the website gives us:
I know some languages have different outputs. It's normal but I am wondering what your thoughts are?
Thanks in advance.
The problem is that different models are being fit.
nls
with self start function SSlogis
fits the model (see help('SSlogis')
)
Asym/(1+exp((xmid-input)/scal))
or, using your notation,
phi1/(1 + exp((phi2 - input)/phi3))
Pen and paper shows that the following transformations give the results in the webpage.
fit <- nls(var ~ SSlogis(time, phi1, phi2, phi3), data = df)
kappa <- coef(fit)[1]
alpha <- exp(coef(fit)[2]/coef(fit)[3])
beta <- 1/coef(fit)[3]
c(kappa = unname(kappa), alpha = unname(alpha), beta = unname(beta))
# kappa alpha beta
#105.7373679 6.8832991 0.2595471
So, in order to automate this, write a simple function.
transf <- function(x){
kappa <- coef(x)[1]
alpha <- exp(coef(x)[2]/coef(x)[3])
beta <- 1/coef(x)[3]
c(kappa = unname(kappa), alpha = unname(alpha), beta = unname(beta))
}
transf(fit)