I have three rasters in r
> lpjre
class : RasterLayer
dimensions : 2803, 5303, 14864309 (nrow, ncol, ncell)
resolution : 0.008333333, 0.008333333 (x, y)
extent : 60.85, 105.0417, 15.95833, 39.31667 (xmin, xmax, ymin, ymax)
crs : +proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0
source : memory
names : xxx
values : 0, 21 (min, max)
> gcre
class : RasterLayer
dimensions : 2803, 5303, 14864309 (nrow, ncol, ncell)
resolution : 0.008333333, 0.008333333 (x, y)
extent : 60.85, 105.0417, 15.95833, 39.31667 (xmin, xmax, ymin, ymax)
crs : +proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0
source : memory
names : layer
values : 0, 39.72 (min, max)
and a landcover raster
> tif4
class : RasterLayer
dimensions : 2803, 5303, 14864309 (nrow, ncol, ncell)
resolution : 0.008333333, 0.008333333 (x, y)
extent : 60.85, 105.0417, 15.95833, 39.31667 (xmin, xmax, ymin, ymax)
crs : +proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0
source : C:/Users/XXXX/landusemaskedme.tif
names : landusemaskedme
values : 1, 12 (min, max)
attributes :
ID zn
from: 1 evergreen needleleaf forest
to : 12 croplands
I plot a scatterplot between lpjre
and gcre
according to different land cover classes by
plot(lpjre[tif4==2],gcre[tif4==2])
I would like to find how can I compute the r2 value between lpjre
and gcre
according to land cover types?
I try this code and gives an error:
> cor(values(lpjre)[tif4==1], values(gcre)[tif4==1], use="complete.obs", method = 'pearson')
Error in values(gcre)[tif4 == 1] : invalid subscript type 'S4'
Reproducible rasters:
library(raster)
ras1 <- raster(matrix(c(1,1,1,2,2,2)))
ras2 <- raster(matrix(c(1,1,1,2,2,2)))
#Generating landcover example data
raster2 <- raster(matrix(c(1,1,1,2,2,2,3,3,3),ncol =3))
raster2 <- as.factor(raster2)
rat <- levels(raster2 )[[1]]
rat[["landcover"]] <- c("land","ocean/lake", "rivers")
levels(raster2 ) <- rat
You can use vector conversion for that. First a reproducible example:
library(raster)
set.seed(42)
ras1 <- raster(nrow = 10, ncol = 10)
ras2 <- raster(nrow = 10, ncol = 10)
lcc <- raster(nrow = 10, ncol = 10)
ras1[] <- runif(100)
ras2[] <- runif(100)
lcc[] <- sample(c(1,2), 100, replace = TRUE)
Now you can convert the raster values into vectors by using []
. From there on you can use logical selection even between the rasters assuming they have corresponding geometric features.
cor(ras1[lcc[] == 2], ras2[lcc[] == 2], use = "complete.obs", method = "pearson")
# [1] -0.1644459