Search code examples
rdplyrdata-manipulationxtsquantmod

Reset cumprod when NA is encountered


I have an xts object with monthly returns of stocks. I want to calculate a rolling cumulative return for the stocks. Some of the stocks have NAs in the data. I want the cumulative return to reset to 1, each time an NA is encountered. Here is some sample data:

rets<-read.table(text=
'Date,AFX SJ Equity,DSY SJ Equity
1996-12-31,0.000000000,0.0298516427
1997-01-31,-0.046874751,0.1173840351
1997-02-28,0.088537483,0.0080555362
1997-03-31,-0.003013021,0.2516612299
1997-04-30,-0.003022126,-0.0425537783
1997-05-30,-0.060610279,0.1222167814
1997-06-30,-0.030128416,0.0594070842
1997-07-31,-0.040264811,NA
1997-08-29,0.143354912,NA
1997-09-30,NA,NA
1997-10-31,0.023807612,0.0458311280
1997-11-28,0.011881887,0.1035818306
1997-12-31,0.023445977,-0.0729239783
1998-01-30,-0.064883184,-0.0007773145
1998-02-27,-0.020408576,0.0405326221
1998-03-31,0.124981915,0.1198516418
1998-04-30,0.081499173,-0.0167247568
1998-05-29,-0.143835151,0.1292490014
1998-06-30,-0.189289470,0.1198825615
1998-07-31,-0.130008077,NA
',sep=',',header=TRUE)

library(lubridate)
library(xts)

rets<-xts(rets[,-1],order.by=ymd(rets[,1]))

Here's what I've tried:

cum_ret <- ifelse(is.na(rets)==T, 1, cumprod(1+rets))

Which gives:

      AFX.SJ.Equity DSY.SJ.Equity
 [1,]     1.0000000      1.029852
 [2,]     0.9531252      1.150740
 [3,]     1.0375126      1.160010
 [4,]     1.0343865      1.451939
 [5,]     1.0312605      1.390154
 [6,]     0.9687555      1.560054
 [7,]     0.9395684      1.652732
 [8,]     0.9017369      1.000000
 [9,]     1.0310053      1.000000
[10,]     1.0000000      1.000000
[11,]            NA            NA
[12,]            NA            NA
[13,]            NA            NA
[14,]            NA            NA
[15,]            NA            NA
[16,]            NA            NA
[17,]            NA            NA
[18,]            NA            NA
[19,]            NA            NA
[20,]            NA      1.000000

This place NAs, anywhere where there is data after the first NA is encountered and a 1 where there was an NA in the original data.

My desired output should look like this:

           AFX SJ Equity DSY SJ Equity
1996-12-31     1.0000000      1.029852
1997-01-31     0.9531252      1.150740
1997-02-28     1.0375126      1.160010
1997-03-31     1.0343865      1.451939
1997-04-30     1.0312605      1.390154
1997-05-30     0.9687555      1.560054
1997-06-30     0.9395684      1.652732
1997-07-31     0.9017369            NA
1997-08-29     1.0310053            NA
1997-10-31            NA            NA
1997-10-31     1.0238076      1.045831
1997-11-28     1.0359724      1.154160
1997-12-31     1.0602618      1.069994
1998-01-30     0.9914686      1.069163
1998-02-27     0.9712341      1.112499
1998-03-31     1.0926208      1.245833
1998-04-30     1.1816685      1.224997
1998-05-29     1.0117031      1.383327
1998-06-30     0.8201983      1.549163
1998-07-31     0.7135659            NA

Solution

  • I don't have xts around, but this process should work equally well. (Because of this, I use lapply to work on rets, you should be able to adapt this to your time-series rather directly.)

    rets[,-1] <- lapply(rets[,-1], function(ret) {
      r <- rle(!is.na(ret))
      r2 <- c(0, cumsum(r$lengths))
      starts <- 1 + head(r2, n = -1)
      ends <- r2[-1]
      seqs <- Map(seq, starts[r$values], ends[r$values])
      for (s in seqs) {
        ret[s] <- cumprod(1 + ret[s])
      }
      ret
    })
    
    rets
    #          Date AFX.SJ.Equity DSY.SJ.Equity
    # 1  1996-12-31     1.0000000      1.029852
    # 2  1997-01-31     0.9531252      1.150740
    # 3  1997-02-28     1.0375126      1.160010
    # 4  1997-03-31     1.0343865      1.451939
    # 5  1997-04-30     1.0312605      1.390154
    # 6  1997-05-30     0.9687555      1.560054
    # 7  1997-06-30     0.9395684      1.652732
    # 8  1997-07-31     0.9017369            NA
    # 9  1997-08-29     1.0310053            NA
    # 10 1997-09-30            NA            NA
    # 11 1997-10-31     1.0238076      1.045831
    # 12 1997-11-28     1.0359724      1.154160
    # 13 1997-12-31     1.0602618      1.069994
    # 14 1998-01-30     0.9914686      1.069163
    # 15 1998-02-27     0.9712341      1.112499
    # 16 1998-03-31     1.0926208      1.245833
    # 17 1998-04-30     1.1816685      1.224997
    # 18 1998-05-29     1.0117031      1.383327
    # 19 1998-06-30     0.8201983      1.549163
    # 20 1998-07-31     0.7135659            NA
    

    The trick here is to use rle to determine the subsets of each vector that are non-NA (stored in the r variable ... though I shouldn't use single-letter variable names). If we look at the first pass within lapply, we'd see

    r
    # Run Length Encoding
    #   lengths: int [1:3] 9 1 10
    #   values : logi [1:3] TRUE FALSE TRUE
    
    seqs
    # [[1]]
    # [1] 1 2 3 4 5 6 7 8 9
    # [[2]]
    #  [1] 11 12 13 14 15 16 17 18 19 20