I have a task to run 8 equal queries (1 query per 1 country) and doing so return data from MySQL database. The reason I can't run 1 query with all countries in one is that each country needs to have different column names. Also, results need to be updated daily with a dynamic date range (last 7 days). Yes, I could run all countries and do the column naming and everything with Pandas but I thought that the following solution would be more efficient. So, my solution was to create a for loop that uses predefined lists with all the countries their respective dimensions and date range variables that change according to the current date. The problem I'm having is that MySQL query running in the loop takes so much more time than if I run the same query directly in our data warehouse (~140-500 seconds vs. 30 seconds). The solution works with smaller tables from DWH. The things is that I don't know which part exactly is causing the problem and how to solve it.
Here is an example of my code with some smaller "tests" implemented in it:
#Import libraries:
from google.cloud import storage
from google.oauth2 import service_account
import mysql.connector
import pandas as pd
import time
from datetime import timedelta, date
#Create a connection to new DWH:
coon = mysql.connector.connect(
host="the host goes here",
user="the user goes here",
passwd="the password goes here"
)
#Create Google Cloud Service credential references:
credentials = service_account.Credentials.from_service_account_file(r'C:\Users\ivo.vancans\OneDrive\Documents\Python Workspace\my credential json goes here.json')
project_id='my project id goes here'
cursor = coon.cursor()
#Create lists of countries and dimensions
countries = ['EE','FI','LV','LT']
appp_id_dim = ['ga:dimension5','ga:dimension5','ga:dimension5','ga:dimension5']
status_dim = ['ga:dimension21','ga:dimension12','ga:dimension20','ga:dimension15']
score_dim = ['ga:dimension11','ga:dimension11','ga:dimension19','ga:dimension14']
#Define the current date and date that was 7 days before current date:
date_now = date.today() - timedelta(days=1)
date_7d_prev = date_now - timedelta(days=7)
#Create a loop
for c,s in zip(countries, score_dim):
start_time = time.time()
#Create the query using string formating:
query = f"""select ca.ID, sv.subType, SUM(svl.score) as '{s}'
from aio.CreditApplication ca
join aio.ScoringResult sr
on sr.creditApplication_ID = ca.ID
join aio.ScorecardVariableLine svl
on svl.id = sr.scorecardVariableLine_ID
join aio.ScorecardVariable sv
on sv.ID = svl.scorecardVariable_ID
where sv.country='{c}'
#and sv.subType ="asc"
and sv.subType != 'fsc'
and sr.created >= '2020-01-01'
and sr.created between '{date_7d_prev} 00:00:00' and '{date_now} 23:59:59'
group by ca.id,sv.subType"""
#Check of sql query
print('query is done', time.time()-start_time)
start_time = time.time()
sql = pd.read_sql_query(query, coon)
#check of assigning sql:
print ('sql is assigned',time.time()-start_time)
start_time = time.time()
df = pd.DataFrame(sql
#, columns = ['created','ID','state']
)
#Check the df assignment:
print ('df has been assigned', time.time()-start_time)
#Create a .csv file from the final dataframe:
start_time = time.time()
df.to_csv(fr"C:\Users\ivo.vancans\OneDrive\Documents\Python Workspace\Testing Ground\{c}_sql_loop_test.csv", index = False, header=True, encoding='utf-8', sep=';')
#Check csv file creation:
print ('csv has been created',time.time()-start_time)
#Close the session
start_time = time.time()
cursor.close()
#Check the session closing:
print('The cursor is closed',time.time()-start_time)
This example has 4 countries because I tried cutting the amount in half but that doesn't help also. That was me thinking that I have some sort of query restrictions on the DWH end because major slow down always started with the 5th country. Running them separately takes almost the same time for each but it still takes too long. So, my tests show that the loop always lags at the step of querying data. Every other step takes less than a second, but querying time goes up to 140-500, sometimes even more, seconds as mentioned previously. So, what do you think is the problem?
Found the solution! After talking to a person in my company who has a lot more experience with SQL and our particular DWH engine, he agreed to help and rewrote the SQL part. Instead of left joining a subquery, I had to rewrite it so that there would be no subquery. Why? Because our particular engine doesn't create an index for subquery, bet separately joined tables will have indexes. That improved the time of the whole script dramatically, from ~40 minutes run time to ~ less than 1 minute.