I have the following code
newtype State s a = State { runState :: s -> (s,a) }
evalState :: State s a -> s -> a
evalState sa s = snd $ runState sa s
instance Functor (State s) where
fmap f sa = State $ \s ->
let (s',a) = runState sa s in
(s',f a)
instance Applicative (State s) where
pure a = State $ \s -> (s,a)
sf <*> sa = State $ \s ->
let (s',f) = runState sf s
(s'',a) = runState sa s' in
(s'', f a)
instance Monad (State s) where
sa >>= k = State $ \s ->
let (s',a) = runState sa s in
runState (k a) s'
get :: State s s
get = State $ \s -> (s,s)
set :: s -> State s ()
set s = State $ \_ -> (s,())
bar (acc,n) = if n <= 0
then return ()
else
set (n*acc,n-1)
f x = factLoop
factLoop = get >>= bar >>= f
And
runState factLoop (1,7)
gives ((5040,0),())
I'm trying to write the function
factLoop = get >>= bar >>= f
using the do notation
I tried
factLoop' = do
(x,y) <- get
h <- bar (x,y)
return ( f h)
But that does not give the correct type which should be State (Int, Int) ()
Any idea ?
Thanks!
>>=
is infixl 1
(left-associating binary operator), so what you really have is
f x = factLoop
factLoop = get >>= bar >>= f
= (get >>= bar) >>= f
= (get >>= bar) >>= (\x -> f x)
= do { x <- (get >>= bar)
; f x }
= do { _ <- (get >>= bar)
; factLoop }
= do { _ <- (get >>= (\x -> bar x))
; factLoop }
= do { _ <- do { x <- get
; bar x }
; factLoop }
= do { x <- get
; _ <- bar x
; factLoop }
the last one is because of the monad associativity law ("Kleisli composition forms a category").
Doing this in the principled way you don't need to guess. After a little while you get a feeling for it of course, but until you do, being formal helps.