Consider a three class classification problem with the following confusion matrix.
cm_matrix =
predict_class1 predict_class2 predict_class3
______________ ______________ ______________
Actual_class1 2000 0 0
Actual_class2 34 1966 0
Actual_class3 0 0 2000
Multi-Class Confusion Matrix Output
TruePositive FalsePositive FalseNegative TrueNegative
____________ _____________ _____________ ____________
Actual_class1 2000 34 0 3966
Actual_class2 1966 0 34 4000
Actual_class3 2000 0 0 4000
The formula that I have used are:
Accuracy Of Each class=(TP ./total instances of that class)
( formula based on an answer here: Individual class accuracy calculation confusion)
Sensitivity=TP./TP+FN ;
The implementation of it in Matlab is:
acc_1 = 100*(cm_matrix(1,1))/sum(cm_matrix(1,:)) = 100*(2000)/(2000+0+0) = 100
acc_2 = 100*(cm_matrix(2,2))/sum(cm_matrix(2,:)) = 100*(1966)/(34+1966+0) = 98.3
acc_3 = 100*(cm_matrix(3,3))/sum(cm_matrix(3,:)) = 100*(2000)/(0+0+2000) = 100
sensitivity_1 = 2000/(2000+0)=1 = acc_1
sensitivity_2 = 1966/(1966+34) = 98.3 = acc_2
sensitivity_3 = 2000/2000 = 1 = acc_3
Question1) Is my formula for Accuracy of each class correct? For calculating accuracy of each individual class, say for positive class I should take the TP in the numerator. Similarly, for accuracy of only the negative class, I should consider TN in the numerator in the formula for accuracy. Is the same formula applicable to binary classification? Is my implementation of it correct?
Question2) Is my formula for sensitivity correct? Then how come I am getting same answer as individual class accuracies?
Answer to question 1. It seems that accuracy is used only in binary classification, check this link. You refer to an answer on this site, but it concerns also a binary classification (i.e. classification into 2 classes only). You seem to have more than two classes, and in this case you should try something else, or a one-versus-all classification for each class (for each class, parse prediction for class_n and non_class_n).
Answer to question 2. Same issue, this measure is appropriate for binary classification which is not your case.
The formula for sensitivity is:
TP./(TP + FN)
The formula for accuracy is:
(TP)./(TP+FN+FP+TN)
See the documentation here.
UPDATE
And if you wish to use the confusion matrix, you have:
TP on the diagonal, at the level of the class
FN the sum of all the values in the column of the class. In the function getvalues
start counting lines from the declaration of the function and check lines 30 and 31:
TP(i)=c_matrix(i,i);
FN(i)=sum(c_matrix(i,:))-c_matrix(i,i);
FP(i)=sum(c_matrix(:,i))-c_matrix(i,i);
TN(i)=sum(c_matrix(:))-TP(i)-FP(i)-FN(i);
If you apply the accuracy formula, you obtain, after calculating and simplifying :
accuracy = c_matrix(i,i) / sum(c_matrix(:))
For the sensitivity you obtain, after simplifying:
sensitivity = c_matrix(i,i) / sum(c_matrix(i,:))
If you want to understand better, just check the links I sent you.