I convert the following df into bins using pd.cut in following:
import numpy as np
import pandas as pd
df = pd.DataFrame(np.random.randint(0,100,size=(5, 4)), columns=list('ABCD'))
print(df)
newDF = pd.cut(df.A, 2, precision=0)
print(newDF)
A B C D
0 83 43 99 85
1 6 57 44 45
2 5 72 10 53
3 24 50 23 18
4 75 25 96 27
0 (44.0, 83.0]
1 (5.0, 44.0]
2 (5.0, 44.0]
3 (5.0, 44.0]
4 (44.0, 83.0]
Is there any way to return the lower bound or upper bound of the range instead of the whole range? For example, from the above example:
0 44.0
1 5.0
2 5.0
3 5.0
4 44.0
Use Series.map
:
pd.cut(df.A, 2, precision=0).map(lambda x: x.left)
s = pd.cut(df.A, 2, precision=0)
pd.Series(data=pd.IntervalIndex(s).left, index = s.index)
#print(df)
#
#
# A B C D
#0 26 70 28 2
#1 49 42 56 28
#2 48 26 40 19
#3 3 50 17 3
#4 20 34 54 42
#
#
#pd.cut(df.A, 2, precision=0).map(lambda x: x.left)
#
#0 3.0
#1 26.0
#2 26.0
#3 3.0
#4 3.0
#Name: A, dtype: category
#Categories (2, float64): [3.0 < 26.0]