I have a data frame which part of the columns are not in the correct order (they are dates). See:
data1989 <- data.frame("date_fire" = c("1987-02-01", "1987-07-03", "1988-01-01"),
"Foresttype" = c("oak", "pine", "oak"),
"meanSolarRad" = c(500, 550, 450),
"meanRainfall" = c(600, 300, 450),
"meanTemp" = c(14, 15, 12),
"1988.01.01" = c(0.5, 0.589, 0.66),
"1986.06.03" = c(0.56, 0.447, 0.75),
"1986.10.19" = c(0.8, NA, 0.83),
"1988.01.19" = c(0.75, 0.65,0.75),
"1986.06.19" = c(0.1, 0.55,0.811),
"1987.10.19" = c(0.15, 0.12, 0.780),
"1988.01.19" = c(0.2, 0.22,0.32),
"1986.06.19" = c(0.18, 0.21,0.23),
"1987.10.19" = c(0.21, 0.24, 0.250),
check.names = FALSE,
stringsAsFactors = FALSE)
> data1989
date_fire Foresttype meanSolarRad meanRainfall meanTemp 1988.01.01 1986.06.03 1986.10.19 1988.01.19 1986.06.19 1987.10.19 1988.01.19 1986.06.19 1987.10.19
1 1987-02-01 oak 500 600 14 0.500 0.560 0.80 0.75 0.100 0.15 0.20 0.18 0.21
2 1987-07-03 pine 550 300 15 0.589 0.447 NA 0.65 0.550 0.12 0.22 0.21 0.24
3 1988-01-01 oak 450 450 12 0.660 0.750 0.83 0.75 0.811 0.78 0.32 0.23 0.25
I would like to order the columns by increasing date, and keep the first 5 columns the same. Keep in mind that in my original dataset I have 30 initial columns to be kept the same.
If you wanted to use dplyr here is an alternative. Note each colname would have to be unique. In you df there were some duplicate ones
library(dplyr)
data1989 <- data.frame("date_fire" = c("1987-02-01", "1987-07-03", "1988-01-01"),
"Foresttype" = c("oak", "pine", "oak"),
"meanSolarRad" = c(500, 550, 450),
"meanRainfall" = c(600, 300, 450),
"meanTemp" = c(14, 15, 12),
"1988.01.01" = c(0.5, 0.589, 0.66),
"1986.06.03" = c(0.56, 0.447, 0.75),
"1986.10.19" = c(0.8, NA, 0.83),
"1988.01.19" = c(0.75, 0.65,0.75),
"1986.06.19" = c(0.1, 0.55,0.811),
"1987.10.19" = c(0.15, 0.12, 0.780),
# "1988.01.19" = c(0.2, 0.22,0.32),
# "1986.06.19" = c(0.18, 0.21,0.23),
# "1987.10.19" = c(0.21, 0.24, 0.250),
check.names = FALSE,
stringsAsFactors = FALSE)
# Sort date column names. replace 6 with first date column
sorted_colnames = sort(names(data1989)[6:ncol(data1989)])
# Sort columns. Replace 5 with last non-date column
data1989 %>%
select(1:5, sorted_colnames)