After scrape some info in a web site I got to save the file with the raw code in html format because I didn't arrive to a solution to find_all
the text in a list of lists.
Now I have the data but I can't get the text because bs4
don't recognize the format list.
Here's my open code:
with open('/my_file.csv', 'r') as read_obj:
csv_reader = reader(read_obj)
list_of_rows = list(csv_reader)
print(list_of_rows)
This is the list format:
[['', '0', '1', '2', '3'], ['0','<span class="item">Red <small>col.</small></span>',
'<span class="item">120 <small>cc.</small></span>',
'<span class="item">Available <small>in four days</small></span>',
'<span class="item"><small class="txt-highlight-red">15 min</small></span>'],
['1', '<span class="item">Blue <small>col.</small></span>',
'<span class="item">200 <small>cc.</small></span>',
'<span class="item">Available <small>in a week</small></span>',
'<span class="item">04 mar <small></small></span>'],
['0', '<span class="item">Green <small>col.</small></span>',
'<span class="item">Available <small>immediately</small></span>',
'<span class="item"><small class="txt-highlight-red">2 hours</small></span>']]
Is there a way to read csv
files in BeautifulSoup an then parse it?
The aim of the task is to keep only the text, removing everithing between '<>'
(<> symbols included).
You can make a function that will apply the beautifulsoup object and return the text. if there are not tags/content to parse, it'll just leave as is.
Also, I'd rather just use pandas to read in that csv.
import pandas as pd
from bs4 import BeautifulSoup
df = pd.read_csv('/my_file.csv')
def foo_bar(x):
try:
return BeautifulSoup(x, 'lxml').text
except:
return x
print ('Parsing html in table...')
df = df.applymap(foo_bar)
Example input:
df = pd.DataFrame([['0','<span class="item">Red <small>col.</small></span>',
'<span class="item">120 <small>cc.</small></span>',
'<span class="item">Available <small>in four days</small></span>',
'<span class="item"><small class="txt-highlight-red">15 min</small></span>'],
['1', '<span class="item">Blue <small>col.</small></span>',
'<span class="item">200 <small>cc.</small></span>',
'<span class="item">Available <small>in a week</small></span>',
'<span class="item">04 mar <small></small></span>'],
['0', '<span class="item">Green <small>col.</small></span>',
'<span class="item">Available <small>immediately</small></span>',
'<span class="item"><small class="txt-highlight-red">2 hours</small></span>']], columns = ['', '0', '1', '2', '3'])
Original table:
print (df.to_string())
0 1 2 3
0 0 <span class="item">Red <small>col.</small></span> <span class="item">120 <small>cc.</small></span> <span class="item">Available <small>in four da... <span class="item"><small class="txt-highlight...
1 1 <span class="item">Blue <small>col.</small></s... <span class="item">200 <small>cc.</small></span> <span class="item">Available <small>in a week<... <span class="item">04 mar <small></small></span>
2 0 <span class="item">Green <small>col.</small></... <span class="item">Available <small>immediatel... <span class="item"><small class="txt-highlight... None
Output:
print (df.to_string())
0 1 2 3
0 0 Red col. 120 cc. Available in four days 15 min
1 1 Blue col. 200 cc. Available in a week 04 mar
2 0 Green col. Available immediately 2 hours None