The Dunn Index is a method of evaluating clustering. A higher value is better. It is calculated as the lowest intercluster distance (ie. the smallest distance between any two cluster centroids) divided by the highest intracluster distance (ie. the largest distance between any two points in any cluster).
I have a code snippet for calculating the Dunn Index:
def dunn_index(pf, cf):
"""
pf -- all data points
cf -- cluster centroids
"""
numerator = inf
for c in cf: # for each cluster
for t in cf: # for each cluster
if t is c: continue # if same cluster, ignore
numerator = min(numerator, distance(t, c)) # find distance between centroids
denominator = 0
for c in cf: # for each cluster
for p in pf: # for each point
if p.get_cluster() is not c: continue # if point not in cluster, ignore
for t in pf: # for each point
if t.get_cluster() is not c: continue # if point not in cluster, ignore
if t is p: continue # if same point, ignore
denominator = max(denominator, distance(t, p))
return numerator/denominator
The problem is this is exceptionally slow: for an example data set consisting of 5000 instances and 15 clusters, the function above needs to perform just over 375 million distance calculations at worst. Realistically it's much lower, but even a best case, where the data is ordered by cluster already, is around 25 million distance calculations. I want to shave time off of it, and I've already tried rectilinear distance vs. euclidean and it's not good.
How can I improve this algorithm?
TLDR: Importantly, the problem is set up in two-dimensions. For large dimensions, these techniques can be ineffective.
In 2D, we can compute the diameter (intracluster distance) of each cluster in O(n log n)
time where n
is the cluster size using convex hulls. Vectorization is used to speed up remaining operations. There are two possible asymptotic improvements mentioned at the end of the post, contributions welcome ;)
Setup and fake data:
import numpy as np
from scipy import spatial
from matplotlib import pyplot as plt
# set up fake data
np.random.seed(0)
n_centroids = 1000
centroids = np.random.rand(n_centroids, 2)
cluster_sizes = np.random.randint(1, 1000, size=n_centroids)
# labels from 1 to n_centroids inclusive
labels = np.repeat(np.arange(n_centroids), cluster_sizes) + 1
points = np.zeros((cluster_sizes.sum(), 2))
points[:,0] = np.repeat(centroids[:,0], cluster_sizes)
points[:,1] = np.repeat(centroids[:,1], cluster_sizes)
points += 0.05 * np.random.randn(cluster_sizes.sum(), 2)
Looks somewhat like this:
Next, we define a diameter
function for computing the largest intracluster distance, based on this approach using the convex hull.
# compute the diameter based on convex hull
def diameter(pts):
# need at least 3 points to construct the convex hull
if pts.shape[0] <= 1:
return 0
if pts.shape[0] == 2:
return ((pts[0] - pts[1])**2).sum()
# two points which are fruthest apart will occur as vertices of the convex hull
hull = spatial.ConvexHull(pts)
candidates = pts[spatial.ConvexHull(pts).vertices]
return spatial.distance_matrix(candidates, candidates).max()
For the Dunn index calculation, I assume that we have already computed the points, the cluster labels and the cluster centroids.
If the number of clusters is large, the following solution based on Pandas may perform well:
import pandas as pd
def dunn_index_pandas(pts, labels, centroids):
# O(k n log(n)) with k clusters and n points; better performance with more even clusters
max_intracluster_dist = pd.DataFrame(pts).groupby(labels).agg(diameter_pandas)[0].max()
# O(k^2) with k clusters; can be reduced to O(k log(k))
# get pairwise distances between centroids
cluster_dmat = spatial.distance_matrix(centroids, centroids)
# fill diagonal with +inf: ignore zero distance to self in "min" computation
np.fill_diagonal(cluster_dmat, np.inf)
min_intercluster_dist = cluster_sizes.min()
return min_intercluster_dist / max_intracluster_dist
Otherwise, we can continue with a pure numpy
solution.
def dunn_index(pts, labels, centroids):
# O(k n log(n)) with k clusters and n points; better performance with more even clusters
max_intracluster_dist = max(diameter(pts[labels==i]) for i in np.unique(labels))
# O(k^2) with k clusters; can be reduced to O(k log(k))
# get pairwise distances between centroids
cluster_dmat = spatial.distance_matrix(centroids, centroids)
# fill diagonal with +inf: ignore zero distance to self in "min" computation
np.fill_diagonal(cluster_dmat, np.inf)
min_intercluster_dist = cluster_sizes.min()
return min_intercluster_dist / max_intracluster_dist
%time dunn_index(points, labels, centroids)
# returned value 2.15
# in 2.2 seconds
%time dunn_index_pandas(points, labels, centroids)
# returned 2.15
# in 885 ms
For 1000
clusters with i.i.d. ~U[1,1000]
cluster sizes this takes 2.2. seconds on my machine. This number drops to .8 seconds with the Pandas approach for this example (many small clusters).
There are two further optimization opportunities that are relevant when the number of clusters is large:
First, I am computing the minimal intercluster distance with a brute force O(k^2)
approach where k
is the number of clusters. This can be reduced to O(k log(k))
, as discussed here.
Second, max(diameter(pts[labels==i]) for i in np.unique(labels))
requires k
passes over an array of size n
. With many clusters this can become the bottleneck (as in this example). This is somewhat mitigated with the pandas approach, but I expect that this can be optimized a lot further. For current parameters, roughly one third of compute time is spent outside of computing intercluser of intracluster distances.