I have two arrays from shared memory reals
and imags
:
#/usr/bin/env python2
reals = multiprocessing.RawArray('d', 10000000)
imags = multiprocessing.RawArray('d', 10000000)
then I make them numpy
-arrays, named reals2
and imags2
, without any copy :
import numpy as np
reals2 = np.frombuffer(reals)
imags2 = np.frombuffer(imags)
# check if the objects did a copy
assert reals2.flags['OWNDATA'] is False
assert imags2.flags['OWNDATA'] is False
I would like to then make a np.complex128
1D-array data
, again without copying the data, but I don't know how to.
Can you make a np.complex128
1D-array data
from a pair of float arrays, without copying, yes/no?
If yes, how?
numpy
complex array from two separate arrays without copying the datanumpy
compiled c code assumes interleaved real, imag data#!/usr/bin/env python2
import multiprocessing
import numpy as np
# parent process creates some data that needs to be shared with the child processes
data = np.random.randn(10) + 1.0j * np.random.randn(10)
assert data.dtype == np.complex128
# copy the data from the parent process to shared memory
shared_data = multiprocessing.RawArray('d', 2 * data.size)
shared_data[0::2] = data.real
shared_data[1::2] = data.imag
# simulate the child process getting only the shared_data
data2 = np.frombuffer(shared_data)
assert data2.flags['OWNDATA'] is False
assert data2.dtype == np.float64
assert data2.size == 2 * data.size
# convert reals to complex
data3 = data2.view(np.complex128)
assert data3.flags['OWNDATA'] is False
assert data3.dtype == np.complex128
assert data3.size == data.size
assert np.all(data3 == data)
# done - if no AssertionError then success
print 'success'
hat tip to: https://stackoverflow.com/a/32877245/52074 as a great starting point.
#!/usr/bin/env python2
import multiprocessing
import os
# third-party
import numpy as np
# constants
# =========
N_POINTS = 3
N_THREADS = 4
# functions
# =========
def func(index, shared_data, results_dict):
# simulate the child process getting only the shared_data
data2 = np.frombuffer(shared_data)
assert data2.flags['OWNDATA'] is False
assert data2.dtype == np.float64
# convert reals to complex
data3 = data2.view(np.complex128)
assert data3.flags['OWNDATA'] is False
assert data3.dtype == np.complex128
print '[child.pid=%s,type=%s]: %s'%(os.getpid(), type(shared_data), data3)
# return the results in a SLOW but relatively easy way
results_dict[os.getpid()] = np.copy(data3) * index
# the script
# ==========
if __name__ == '__main__':
# parent process creates some data that needs to be shared with the child processes
data = np.random.randn(N_POINTS) + 1.0j * np.random.randn(N_POINTS)
assert data.dtype == np.complex128
# copy the data from the parent process to shared memory
shared_data = multiprocessing.RawArray('d', 2 * data.size)
shared_data[0::2] = data.real
shared_data[1::2] = data.imag
print '[parent]: ', type(shared_data), data
# do multiprocessing
manager = multiprocessing.Manager()
results_dict = manager.dict()
processes = []
for index in xrange(N_THREADS):
process = multiprocessing.Process(target=func, args=(index, shared_data, results_dict))
processes.append(process)
for process in processes:
process.start()
for process in processes:
process.join()
# get the results back from the processes
results = [results_dict[process.pid] for process in processes]
# verify the values from the processes
for index in xrange(N_THREADS):
result = results[index]
assert np.all(result == data * index)
del processes
# done
print 'success'