Most examples I have found are using data that has time and number
var data = [
{
"Time": "19-Jan-2018 11:24:49.000 UTC",
"Speed": 1.885
},
{
"Time": "19-Jan-2018 11:24:59.000 UTC",
"Speed": 1.875
},
{
"Time": "19-Jan-2018 11:25:00.000 UTC",
"Speed": 1.878
},
{
"Time": "19-Jan-2018 11:25:01.000 UTC",
"Speed": 1.876
}
]
I am looking to stack type
var data = [
{
"Time": "19-Jan-2018 11:24:49.000 UTC",
"type": "CAT"
},
{
"Time": "19-Jan-2018 11:24:59.000 UTC",
"type": "DOG"
},
{
"Time": "19-Jan-2018 11:25:00.000 UTC",
"type": "CAT"
},
{
"Time": "19-Jan-2018 11:25:01.000 UTC",
"Type": "BAT"
}
]
How can I stack categorical data, while allowing the user to select time/category pairs, as in the following Example?
I adapted the example to time/category data in this fiddle.
Those dates would only parse in Chrome, so
const parseDate = d3.utcParse("%d-%b-%Y %H:%M:%S.%L UTC");
data.forEach(d => {
d.Time = parseDate(d.Time);
})
I changed the key functions to use ,
function multikey(x,y) {
return x + ',' + y;
}
function splitkey(k) {
return k.split(',');
}
I also changed fake group stack_second
to convert string-dates from the multikeys back into Dates, and to initialize categories to 0 (since every stack has to be present for every X).
function stack_second(group, categories) {
return {
all: function() {
var all = group.all(),
m = {};
// build matrix from multikey/value pairs
all.forEach(function(kv) {
var ks = splitkey(kv.key);
m[ks[0]] = m[ks[0]] || Object.fromEntries(categories.map(c=>[c,0]));
m[ks[0]][ks[1]] = kv.value;
});
// then produce multivalue key/value pairs
return Object.keys(m).map(function(k) {
return {key: new Date(k), value: m[k]};
});
}
};
}
Get the array of categories from the source data:
const categories = Array.from(new Set(data.map(d => d.Type)).values());
When dealing with date/time, you have to choose a d3 time interval appropriate for your data. Here minutes looked right. Using UTC d3-time methods everywhere because your source data is UTC.
const interval = d3.utcMinute;
Calculate xscale domain and apply:
let extent = d3.extent(data, d=>d.Time);
extent[1] = interval.offset(extent[1], 1)
chart
.x(d3.scaleTime().domain(extent))
.xUnits(interval.range)
Right number of ticks, also formatted in UTC:
chart.xAxis().ticks(d3.utcMinute).tickFormat(d3.utcFormat('%H:%M'))
Match colors between stacks and wedges with
.colors(d3.scaleOrdinal().domain(categories).range(d3.schemeCategory10))
Crossfilter initialization, using the interval and categories:
const interval = d3.utcMinute; // choose appropriate to your data
var cf = crossfilter(data),
timeTypeDim = cf.dimension(function(d) { return multikey(interval(d.Time), d.Type); }),
timeTypeGroup = timeTypeDim.group(), // reduceCount by default
stackedGroup = stack_second(timeTypeGroup, categories);
And here's the chart code for completeness, although we've already discussed the relevant parts:
function sel_stack(i) {
return function(d) {
return d.value[i];
};
}
chart
.width(600)
.height(400)
.colors(d3.scaleOrdinal().domain(categories).range(d3.schemeCategory10))
.controlsUseVisibility(true)
.x(d3.scaleTime().domain(extent))
.xUnits(interval.range)
.margins({left: 80, top: 20, right: 10, bottom: 20})
.brushOn(false)
.clipPadding(10)
.title(function(d) {
return d.key + '[' + this.layer + ']: ' + d.value[this.layer];
})
.legend(dc.legend().x(540).y(50))
.dimension(timeTypeDim)
.group(stackedGroup, categories[0], sel_stack(categories[0]))
.renderLabel(true);