I'm required to use Spark 2.1.1 and have a simple ML use case where I fit a logistic regression to perform a classification based on both continuous and categorical variables.
I automatically detect categorical variables and index them in the ML pipeline. However when I then try to apply one-hot encoding to each of my variables (the oneHotEncodersStages value in the code below), it results in an error when creating the pipeline:
Error:(48, 118) type mismatch; found : Array[java.io.Serializable] required: Array[_ <: org.apache.spark.ml.PipelineStage] Note: java.io.Serializable >: org.apache.spark.ml.PipelineStage, but class Array is invariant in type T. You may wish to investigate a wildcard type such as
_ >: org.apache.spark.ml.PipelineStage
. (SLS 3.2.10)
val pipeline = new Pipeline().setStages(stringIndexerStages :+ oneHotEncodersStages :+ indexer :+ assembler :+ lr :+ indexToLabel)
I do not find how to solve this error... any tips? Below is a minimum working example
import spark.implicits._
val df = Seq(
("automatic","Honda",200,"Cheap"),
("semi-automatic","Ford",240,"Expensive")
).toDF("cat_type","cat_brand","Speed","label")
def onlyFeatureCols(c: String): Boolean = !(c matches "id|label") // Function to select only feature columns (omit id and label)
def isCateg(c: String): Boolean = c.startsWith("cat")
def categNewCol(c: String): String = if (isCateg(c)) s"idx_${c}" else c
def isIdx(c: String): Boolean = c.startsWith("idx")
def oneHotNewCol(c: String): String = if (isIdx(c)) s"vec_${c}" else c
val featuresNames = df.columns
.filter(onlyFeatureCols)
.map(categNewCol)
val stringIndexerStages = df.columns.filter(isCateg)
.map(c => new StringIndexer()
.setInputCol(c)
.setOutputCol(categNewCol(c))
.fit(df.select(c))
)
val oneHotEncodersStages = df.columns.filter(isIdx)
.map(c => new OneHotEncoder()
.setInputCol(c)
.setOutputCol(oneHotNewCol(c)))
val indexer = new StringIndexer().setInputCol("label").setOutputCol("labels").fit(df)
val indexToLabel = new IndexToString().setInputCol("prediction").setOutputCol("predicted_label").setLabels(indexer.labels)
val assembler = new VectorAssembler().setInputCols(featuresNames).setOutputCol("features")
val lr = new LogisticRegression().setFeaturesCol("features").setLabelCol("labels")
val pipeline = new Pipeline().setStages(stringIndexerStages :+ oneHotEncodersStages ++ indexer :+ assembler :+ lr :+ indexToLabel)
stringIndexerStages and oneHotEncodersStages are arrays. stringIndexerStages :+ oneHotEncodersStages - creating new array where second array using as single element. Using "++" instead of ":+":
val pipeline = new Pipeline().setStages(stringIndexerStages ++ oneHotEncodersStages :+ indexer :+ assembler :+ lr :+ indexToLabel)