Minimum viable example included ;)
Want I want to to is simply to use the parameters from GridSearchCV to use a Pipeline.
#I want to create a SVM using a Pipeline, and validate the model (measure the accuracy)
#import libraries
from sklearn.svm import SVC
from sklearn.model_selection import GridSearchCV
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
import pandas as pd
#load test data
data = load_iris()
X_trainset, X_testset, y_trainset, y_testset = train_test_split(data['data'], data['target'], test_size=0.2)
#And here we prepare the pipeline
pipeline = Pipeline([('scaler', StandardScaler()), ('SVM', SVC())])
grid = GridSearchCV(pipeline, param_grid={'SVM__gamma':[0.1,0.01]}, cv=5)
grid.fit(X_trainset, y_trainset)
# (Done! Now I can print the accuracy and other metrics)
#Now I want to put together training set and validation set, to train the model before deployment
#Of course, I want to use the best parameters found by GridSearchCV
big_x = np.concatenate([X_trainset,X_testset])
big_y = np.concatenate([y_trainset,y_testset])
Up to here, it works with no problem. Then, I write this line:
model2 = pipeline.fit(big_x,big_y, grid.best_params_)
Error!
TypeError: fit() takes from 2 to 3 positional arguments but 4 were given
Then I tried to be more explicit:
model2 = pipeline.fit(big_x,big_y,fit_params=grid.best_params_)
Error again!
ValueError: Pipeline.fit does not accept the fit_params parameter. You can pass parameters to specific steps of your pipeline using the stepname__parameter format, e.g. `Pipeline.fit(X, y, logisticregression__sample_weight=sample_weight)`.
Then I tried (out of curiosity) to insert manually the parameter:
pipeline.fit(big_x,big_y, SVM__gamma= 0.01) #Note: I may need to insert many parameters, not just one
Error again :(
TypeError: fit() got an unexpected keyword argument 'gamma'
I cannot understand why it does not find gamma. I decided to print pipeline.get_params() to have an idea.
In [11]: print(pipeline.get_params())
Out [11]:
{'memory': None,
'steps': [('scaler', StandardScaler(copy=True, with_mean=True, with_std=True)), ('SVM', SVC(C=1.0, break_ties=False, cache_size=200, class_weight=None, coef0=0.0, decision_function_shape='ovr', degree=3, gamma='scale', kernel='rbf', max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False))],
'verbose': False,
'scaler': StandardScaler(copy=True, with_mean=True, with_std=True),
'SVM': SVC(C=1.0, break_ties=False, cache_size=200, class_weight=None, coef0=0.0, decision_function_shape='ovr', degree=3, gamma='scale', kernel='rbf', max_iter=-1, probability=False, random_state=None, shrinking=True, tol=0.001, verbose=False),
'scaler__copy': True, 'scaler__with_mean': True, 'scaler__with_std': True, 'SVM__C': 1.0, 'SVM__break_ties': False, 'SVM__cache_size': 200, 'SVM__class_weight': None, 'SVM__coef0': 0.0, 'SVM__decision_function_shape': 'ovr', 'SVM__degree': 3, 'SVM__gamma': 'scale', 'SVM__kernel': 'rbf', 'SVM__max_iter': -1, 'SVM__probability': False, 'SVM__random_state': None, 'SVM__shrinking': True, 'SVM__tol': 0.001, 'SVM__verbose': False}
I can find SVM__gamma in the list! So why is there an error?
Version of Scikit: 0.22.1
Version of python: 3.7.6
.fit()
, as in, the call to the .fit()
function of the SVC Class, has no parameter called gamma. When you call pipeline.fit(SVM__gamma)
it's passing the gamma param to the .fit()
call of the SVM step, which isn't going to work.
You set params in scikit-learn using the .set_params() functions. At the lowest level (I.E. against SVC itself) you can just do SVC.set_params(gamma='blah')
. In the pipeline you'd follow the same double underscore notation you're using in the param grid, so pipeline.set_params(SVM__gamma=blah)
,
If you're only setting a single param against a single step of your pipeline, it's usually convenient to access the step directly with pipeline.named_steps.SVM.set_params(gamma='blah')
, or else use pipeline.set_params(**grid.best_params_)
to use your grid search's best params. (the ** notation explodes a dict of {'A':1, 'B':2} out into A=1, B=2 for you)
Here's a snippet of a script that does what I think you're trying to do (albeit with different algorithms):
# Set the classifier as an XGBClassifier
clf_pipeline = Pipeline(
steps=[
('preprocessor', preprocessor),
('classifier', XGBClassifier(n_jobs=6, n_estimators=20))
]
)
# In[41]:
# Cross validation: 60 iterations with 3 fold CV.
n_features_after_transform = clf_pipeline.named_steps.preprocessor.fit_transform(df).shape[1]
param_grid = {
'classifier__max_depth':stats.randint(low=2, high=100),
'classifier__max_features':stats.randint(low=2, high=n_features_after_transform),
'classifier__gamma':stats.uniform.rvs(0, 0.25, size=10000),
'classifier__subsample':stats.uniform.rvs(0.5, 0.5, size=10000),
'classifier__reg_alpha':stats.uniform.rvs(0.5, 1., size=10000),
'classifier__reg_lambda':stats.uniform.rvs(0.5, 1., size=10000)
}
rscv = RandomizedSearchCV(
clf_pipeline,
param_grid,
n_iter=60,
scoring='roc_auc',
cv=StratifiedKFold(n_splits=3, shuffle=True)
)
rscv.fit(df, y)
# In[42]:
# Set the tuned best params and beef up the number of estimators.
clf_pipeline.set_params(**rscv.best_params_)
clf_pipeline.named_steps.classifier.set_params(n_estimators=200)
So long story short, you can set an individual parameter by accessing the class you want to set the param for in the pipeline's named_steps
. To set the parameters that your Grid Search identified as best, use pipeline.set_params(**grid.best_params_)